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1. Background
• High-resolution (convective-scale) Numeri-

cal Weather Prediction (NWP): more dynami-
cal processes related to convection and precip-
itation are resolved explicitly
• DA techniques need to evolve in order to keep

up with the developments in high-res. NWP

– breakdown of dynamical balances at
smaller scales

– strongly nonlinear processes associated with
convection and moisture/precipitation

– move towards ensemble-based methods

• It may be unfeasible, and indeed undesir-
able, to initially investigate the potential of
DA schemes on state-of-the-art NWP models.
Solution: idealised models...

– capture some fundamental processes
– computationally inexpensive to implement
– extensive investigation of forecast/ assim-

ilation system in a controlled environment

• ‘Toy’ models: a hierarchy of complexity

– ODE models (e.g., Lorenz: L63, L95, etc.)
– idealised fluid models (e.g., BV, QG)
– simplified operational NWP configurations

3. Model: SWEs with ‘rain’
An idealised fluid model (after [1],[2]): atmo-
sphere with moist convection. Ingredients:
rotating shallow water equations (SWEs) + ...
• two threshold heights Hc < Hr: when fluid ex-

ceeds these heights, different mechanisms kick
in and alter the classical SW dynamics.

• modifications to the effective pressure gradient
• evolution equation for model ‘rain’ coupled to

momentum equation

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu
2 + P ) + hc20∂xr

−fhv +Q∂xb = 0

∂t(hv) + ∂x(huv) + fhu = 0,

∂t(hr) + ∂x(hur) + hβ̃∂xu+ αhr= 0,

where P and Q are defined via the effective pres-
sure p = p(h) = 1

2gh
2 by:

P (h, b) =

{
p(Hc − b), for h+ b > Hc,

p(h), otherwise,

Q(h, b) =

{
p′(Hc − b), for h+ b > Hc,

p′(h), otherwise,

with p′ denoting the derivative of p with respect
to its argument h, and:

β̃ =

{
β, for h+ b > Hr and ∂xu < 0,

0, otherwise.
(3)

(black - standard SWEs; red - modifications)

• h = fluid depth, (u, v) = velocities, r = rain
mass fraction; all as a function of (x, t). b =
b(x) bottom topography

• Hc, Hr = threshold heights, above which con-
vection and ‘rain’ processes occur; α, β, and
c20 are parameters relating to the removal, pro-
duction, and evolution of ‘rain’ in the model

2. Approach
1. Describe a physically plausible idealised

model; investigate numerically (details in [2])
• based on rotating SWEs: “1D symmetric”
• exhibits important aspects of convective-

scale dynamics
– disruption of large-scale balance
– initiation of daughter cells away from the

parent cell by gravity wave propagation
– convection downstream from a ridge

2. Ensemble-basedDA: relevant for convective-
scale NWP? Algorithm: perturbed obs. EnKF.
For meaningful experiments:

• dynamics: suitable time- and length-scales
• DA: “tuning” the observing system and en-

semble configuration
• exploiting the model’s strong non-
linearity

4. Idealised DA experiments
Dynamics: time- and length-scales
• non-dimensional parameters, Rossby and

Froude number: Ro = Fr = 1

• length of domain ∼ 500 km: 250 cells implies
forecast grid size of ∼ 2km

Assimilation: twin model set-up
• imperfect model setting: “truth” trajectory run

at higher resolution (here, 2 × forecast res.)
• inflation: xf

i ← γ(xf
i − xf ) + xf

• localisation: Pf
loc ← ρloc ◦Pf

• diagnostics: error vs spread, observational in-
fluence diagnostic (after [3]): OI = tr(HK)

p
whereHK is Kalman gain matrix in obs. space,
p is number of obs.
• hourly cycling for 72hrs (allow ∼ 24hrs spin-up

and ∼48hrs to analyse)
• for N ensemble members, tune the system:

obs. noise σσσo, obs. density (e.g., observe every
50km), localisation scale ρloc, inflation factor γ.
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Domain-averaged error measures  (N = 20): 
 [od, loc, inf] = [25, 2.5, 1.25]

A well-configured ensemble is key to pro-
viding an adequate estimation of forecast
error: ensemble spread should be comparable to
error in both forecast and analysis
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OI diagnostic  (N = 20): [od, loc, inf] = [25, 2.5, 1.25]

Observing system should be tuned to give a
similar OI as operational NWP systems (∼ 20%)
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Nonlinearity of the thresholds: some mem-
bers exhibit convection/precipitation while others
do not - issues with non-Gaussianity/bi-modality

5. Current and future steps
• Experiments with topography (more gravity

wave dynamics)
• Imperfect model via, e.g., misspecified thresh-

old heights to further exploit nonlinearity
• Compare with, e.g., nonlinear iterative EnKF?
• port the model into an open framework for DA

research?

Q. How can we use the model to ascertain
how DA algorithms manage the strong
nonlinearities associated with convection?
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