

Using an idealised fluid model to investigate the EnKF in the presence of convection

Tom Kent^{*1}, Onno Bokhove¹, Steven Tobias¹, Gordon Inverarity² (1) School of Mathematics, University of Leeds, UK; (2) Met Office, UK *Email: mmtk@leeds.ac.uk

1. Background

- High-resolution (convective-scale) Numerical Weather Prediction (NWP): more dynamical processes related to convection and precipitation are resolved explicitly
- DA techniques need to evolve in order to keep up with the developments in high-res. NWP
 - breakdown of **dynamical balances** at smaller scales
 - strongly nonlinear processes associated with convection and moisture/precipitation - move towards **ensemble-based** methods

2. Approach

- 1. Describe a **physically plausible idealised** model; investigate numerically (details in [2])
 - based on rotating SWEs: "1D symmetric"
 - exhibits important aspects of convectivescale dynamics
 - disruption of large-scale balance
 - initiation of daughter cells away from the parent cell by gravity wave propagation
 - convection downstream from a ridge
- 2. Ensemble-based DA: relevant for convectivescale NWP? Algorithm: perturbed obs. EnKF. For meaningful experiments:
 - dynamics: suitable time- and length-scales
 - DA: "tuning" the observing system and ensemble configuration
 - exploiting the model's **strong** nonlinearity

- It may be **unfeasible**, and indeed **undesir**able, to initially investigate the potential of DA schemes on state-of-the-art NWP models. Solution: idealised models...
 - capture some fundamental processes
 - computationally inexpensive to implement
 - extensive investigation of forecast/ assimilation system in a **controlled** environment
- 'Toy' models: a hierarchy of complexity
 - ODE models (e.g., Lorenz: L63, L95, etc.)
 - idealised fluid models (e.g., BV, QG) - simplified operational NWP configurations

3. Model: SWEs with 'rain'

An idealised fluid model (after [1], [2]): atmosphere with moist convection. Ingredients: rotating shallow water equations (SWEs) + ...

• two threshold heights $H_c < H_r$: when fluid exceeds these heights, different mechanisms kick

4. Idealised DA experiments

Dynamics: time- and length-scales

- non-dimensional parameters, Rossby and Froude number: Ro = Fr = 1
- length of domain ~ 500 km: 250 cells implies forecast grid size of ~ 2 km

Assimilation: twin model set-up

• imperfect model setting: "truth" trajectory run at higher resolution (here, $2 \times$ forecast res.)

• inflation: $\mathbf{x}_i^f \leftarrow \gamma(\mathbf{x}_i^f - \overline{\mathbf{x}}^f) + \overline{\mathbf{x}}^f$

• localisation: $\mathbf{P}_{loc}^{f} \leftarrow \rho_{loc} \circ \mathbf{P}^{f}$

- diagnostics: error vs spread, observational influence diagnostic (after [3]): $OI = \frac{tr(\mathbf{HK})}{2}$ where **HK** is Kalman gain matrix in obs. space, p is number of obs.
- hourly cycling for 72hrs (allow ~ 24 hrs spin-up) and ~ 48 hrs to analyse)
- for N ensemble members, tune the system: obs. noise σ_o , obs. density (e.g., observe every 50km), localisation scale ρ_{loc} , inflation factor γ .

in and alter the classical SW dynamics.

• modifications to the effective pressure gradient • evolution equation for model 'rain' coupled to momentum equation

$$\partial_t h + \partial_x (hu) = 0,$$

 $\partial_t (hu) + \partial_x (hu^2 + P) + hc_0^2 \partial_x r$
 $-fhv + Q \partial_x b = 0$
 $\partial_t (hv) + \partial_x (huv) + fhu = 0,$
 $\partial_t (hr) + \partial_x (hur) + h \beta \partial_x u + \alpha hr = 0,$

where P and Q are defined via the effective pressure $p = p(h) = \frac{1}{2}gh^2$ by:

$$P(h,b) = \begin{cases} p(H_c - b), & \text{for } h + b > H_c, \\ p(h), & \text{otherwise,} \end{cases}$$
$$Q(h,b) = \begin{cases} p'(H_c - b), & \text{for } h + b > H_c, \\ p'(h), & \text{otherwise,} \end{cases}$$

with p' denoting the derivative of p with respect

A well-configured ensemble is key to providing an adequate estimation of forecast **error:** ensemble spread should be comparable to bers exhibit convection/precipitation while others error in both forecast and analysis

Observing system should be tuned to give a similar OI as operational NWP systems (~ 20%)

Nonlinearity of the thresholds: some memdo not - issues with non-Gaussianity/bi-modality

to its argument h, and:

for $h + b > H_r$ and $\partial_x u < 0$, (3) otherwise. $\widetilde{\beta} = \begin{cases} \beta, \\ 0 \end{cases}$

(black - standard SWEs; red - modifications)

- h =fluid depth, (u, v) =velocities, r =rain mass fraction; all as a function of (x, t). b =b(x) bottom topography
- H_c, H_r = threshold heights, above which convection and 'rain' processes occur; α , β , and c_0^2 are parameters relating to the removal, production, and evolution of 'rain' in the model

5. Current and future steps

- Experiments with topography (more gravity wave dynamics)
- Imperfect model via, e.g., misspecified threshold heights to further exploit nonlinearity
- Compare with, e.g., nonlinear iterative EnKF?
- port the model into an open framework for DA research?

Q. How can we use the model to ascertain how DA algorithms manage the strong nonlinearities associated with convection?

References

- Würsch, M., and Craig, G.C., 2014: A simple dynamical model of cumulus convection for data assimilation research. Meteorologische Zeitschrift. 23(5), 483-490.
- Kent, T., Bokhove, O., Tobias, S.M., 2016: A modi-|2| fied shallow water model for investigating convectivescale data assimilation Submitted: MWR.
- Cardinali, C., Pezzulli, S., and Andersson, E, 2004: 3 Influence-matrix diagnostic of a data assimilation system. QJRMS, 130(603):2767-2786.

Acknowledgements

Research supported by EPSRC & Met Office. We thank Neill Bowler and Mike Cullen for helpful discussions.