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Talk outline

I Motivation: extreme rainfall and flooding
I Wetropolis flood demonstrator: background and description
I Mathematical and numerical modelling of rivers: open-channel flow
I Simulations: the Wetropolis ‘live’ dashboard
I Current/next steps: ...

Inspiration for Wetropolis: the Boxing Day 2015 floods of the River Aire in Leeds
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Motivation: high-impact weather

E.g., Storm Ciara (Feb. 2020): from numerical weather prediction to flooding (in
Leeds)

Source: Met Office and LeedsLive.

Urban flooding is a major hazard worldwide, brought about by intense rainfall and
often exacerbated by the built environment.

Flood mitigation requires accurate predictions (good models + data) as well as
effective communication and engagement of stakeholders and the public.
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Introducing Wetropolis (Est. 2016)

I interactive table-top model of extreme rainfall and flooding (outreach project)

I conceptualises many important aspects of the science of flooding and extreme
events in a way that is accessible to and directly engages the public...

I Also of interest from a (fluid dynamical) modelling perspective: (i) design
model and (ii) testbed for predictive modelling and data assimilation.
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Introducing Wetropolis: design and set-up

GOAL (2016): to demonstrate random extreme rainfall and flood events in a physical
model on reduced spatial and temporal scales.

Components:

I a winding river channel with parallel canal,

I a reservoir for water storage,

I a porous groundwater cell (analogous to a
moor)

I and random daily rainfall.

Water enters the river channel in four places:

(i) the upstream inflow;

(ii) overflow from the reservoir;

(iii) overflow from the groundwater cell; and

(iv) via the canal in the city.

The river bed is sloping down (uniformly with gradient 1 in 100); different channel
cross-sectional areas in floodplain regions and urban/city region (more later on).
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Introducing Wetropolis: design and set-up

GOAL (2016): to demonstrate random extreme rainfall and flood events in a physical
model on reduced spatial and temporal scales.

Rainfall is supplied randomly:

I in space at four locations
(reservoir, moor, reservoir
and moor, or nowhere)

I in time at four rainfall rates
corresponding to 10%,
20%, 40%, or 90% of a
Wetropolis day (wd)

I joint probabilities (rain
amount times rain location)
determined daily via two
asymmetric Galton boards
(16 possible outcomes)

The most extreme daily rainfall event thus involves rainfall on both moor and reservoir
for 90% of a Wetropolis day with probability 7/256 = 0.027...; i.e., we must wait on
average 256/7 ≈ 36 wds for an ‘extreme’ rainfall event.
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Wetropolis: modelling

GOAL (2016): to demonstrate random extreme rainfall and flood events in a physical

model on reduced spatial and temporal scales.

Achieved! How? Numerical design model to determine the relevant time and length
scales prior to construction: crude, inexpensive but sufficient for rapid exploration of
design choices.
Outcome: pump flow-rates determined, length of channel, Wetropolis day = 10
seconds, etc... lots of fun!

Recall: we must wait on average 256/7 ≈ 36 wds for an ‘extreme’ rainfall event, so
just over 6 minutes in real-time... important concept of return period.

GOAL (2020): to develop the hydrodynamic modelling further and improve the

visualisation of its output, with a view to conducting real-time simulations with data
assimilation.

Why?

I to enhance the outreach experience with a live display of the (real-time)
numerical simulations in tandem with the physical set-up

I to investigate potential issues that arise when combining (imperfect) models and
data in an idealised environment
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Open-channel flow

I Examples in our environment: natural (e.g., rivers and streams) and man-made
waterways (e.g., conduits, canals, drainage and sewer systems).

I Fluid flows through channels of varying geometries with a free surface.
I Fluid mechanical modelling of such flows is termed hydraulic modelling
I Unsteady open-channel flow is typically modelled using the St. Venant equations

in one (along-channel) spatial dimension with along-channel coordinate.
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St. Venant equations

Equations of motion: hierarchy

Navier-Stokes
depth-−−−−→
average

2D SWEs
area-−−−−→

average
1D St. Venant

Assumptions:
I flow is hydrostatic, i.e., horizontal length and velocity scales well exceed their

vertical counterparts such that vertical fluid accelerations are negligible;
I flow is one-dimensional, i.e., the transverse free surface is horizontal and the

velocity is approximately uniform in a cross-section;
I channel curvature is small and the bed slope is small,
I sediment and bed motion are neglected on the timescales considered.
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St. Venant equations

Model variables: cross-sectional area A = A(s, t) and velocity u = u(s, t), both
functions of the along-channel spatial coordinate s and time t.

Continuity: ∂tA+ ∂s(Au) = SA(s, t), (1a)

Velocity: ∂tu+ u∂su+ g∂sh− g
(
So − Sf

)
= 0, (1b)

where:
I SA(s, t) is the mass source term [units m2s−1],
I So = −∂sb is the bed slope [dimensionless], where b = b(s) is the bathymetry,
I Sf is the friction term [dimensionless],
I and g is the gravitational acceleration [units ms−2].

Note that water depth h = h(s, t) appears in (1b) and is known via the (invertible)
function h = h(A(s, t), s); it depends explicitly on both A = A(s, t) and s.

The Manning relation for friction:

Sf =
C2

m

R4/3
u|u|, (2)

where R = R(h) = wet area
wetted perimeter

[units m] is the hydraulic radius and Cm is the

Manning friction coefficient.
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Kinematic approximation

When the dominant balance is between the Manning friction and the bed slope – or
when water depth, bed-slope and velocity are constant – we obtain the kinematic
velocity approximation:

���
���

��: 0

∂tu+ u∂su+ g∂sh−g
(
So − Sf

)
= 0 =⇒ u =

R2/3

Cm

√
−∂sb, (3)

assuming that u remains positive.

Substituting the kinematic velocity into the continuity equation, we obtain the
kinematic model:

∂tA+ ∂s

(
AR2/3

Cm

√
−∂sb

)
= SA(s, t). (4)

This kinematic model for river flow has been used to determine suitable time- and
length-scales efficiently for design purposes prior to construction of the physical
Wetropolis set-up.

To perform accurate predictions of the hydrodynamics in Wetropolis, more advanced
models, e.g., the St. Venant equations, are likely required, in combination with an
efficient data assimilation algorithm to constrain the model.
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St. Venant equations: conservative form

Combining the continuity and velocity equations, the evolution equation for the
momentum, or discharge, Q = Au [units m3s−1] can be derived:

∂t(Au) + ∂s
(
Au2

)
+ gA∂sh = −g

(
A∂sb+

C2
mAu|u|
R(A)4/3

)
+ uSA(s, t). (5)

Noting that the pressure term (underlined above) is in nonconservative form, it can be
expressed as follows:

A∂sh = ∂s (Ah)− h∂sA. (6)

The Ah term is now in conservative form and the derivative no longer acts on h
directly but on the dependent variable A = A(s, t).

The conservative form of the St. Venant equations can be re-expressed as:

∂tA+ ∂s(Au) = SA(s, t), (7a)

∂t(Au) + ∂s
(
Au2 + gAh

)
− gh∂sA = −g

(
A∂sb+

C2
mAu|u|
R4/3

)
+ uSA(s, t), (7b)

where the nonconservative product has been underlined.
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St. Venant: hyperbolic?

St. Venant equations in vector form:

∂tUUU + ∂sFFF +GGG∂sUUU = SSS, (8)

with vector of unknowns UUU = UUU(s, t), flux FFF , nonconservative product matrix GGG and
source/sink vector SSS defined by

UUU = (A,Au)T , FFF = FFF (UUU) = (Au,Au2 + g hA)T ,

GGG =GGG(UUU) =

(
0 0
−gh 0

)
, SSS = SSS(UUU) =

(
SA,−gA∂sb− g

C2
mAu|u|
R4/3

+ uSA

)T

.

(9)

The Jacobian matrix JJJ = ∂FFF/∂UUU +GGG for system (8) is then given by

JJJ =

(
0 1

−u2 + gA∂h/∂A 2u

)
. (10)

and its eigenvalues of JJJ are

λ± = u±
√
gA∂h/∂A. (11)

If ∂h/∂A is positive, the eigenvalues are real and therefore the system is hyperbolic.
There exist novel numerical methods for integrating (nonconservative) hyperbolic
systems of PDEs ... e.g., FV or discontinuous Galerkin FEM.
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Wetropolis: channel geometry I

Schematic of the channel
geometry with a one-sided sloping
floodplain: the cross-sectional
area A = A(h, s) (blue shaded
area) with associated wetted
perimeter W =W (h) (thick blue
line), in this instance for
hr < h < hr + hf . When h < hr,
the water flows in the rectangular
channel of width wr.

αr

A(h(s), s)

wr wf

hr

hf

h(s)

Water depth h as a function of cross-sectional area A and along-channel coordinate s:

h(A, s) =


A/wr when A < A1;

hr − wr tanαr +
√
w2

r tanα2
r + 2(A− wrhr) tanαr when A1 < A < A2;

(A+wf (hr+
1
2
hf ))

wr+wf
when A > A2;

with A1 = wrhr and A2 = (hr + hf )(wr + wf )− wf (hr + 1
2
hf ). Note that

∂h/∂A > 0.
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Wetropolis: channel geometry II

Schematic of the channel
geometry in the city: the
cross-sectional area A = A(h, s)
(blue shaded area) with associated
wetted perimeter W =W (h)
(thick blue line), in this instance
for h > hc (in flood). When
h < hc, the water flows in the
rectangular channel of width wc.

A(h(s), s)

wrwc wc

hc
h(s)

Water depth h as a function of cross-sectional area A and along-channel coordinate s:

h(A, s) =

{
A/wr when A < Ac;
A+2wchr
wr+2wc

when A > Ac;

with Ac = wrhc. Note that ∂h/∂A > 0.
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The full Wetropolis system of river, moor, canals, and reservoir, all coupled together
with weir relations, for the unknowns A(s, t), u(s, t), hm(y, t), hres(t), h1c(t), h2c(t)
and h3c(t) is as follows:
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Simulations

I Taster: https://github.com/tkent198/hydraulic wetro#taster
I Full system:

https://github.com/tkent198/hydraulic wetro#preliminary-simulations
I Many more online, including code and running instructions...
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Wetropolis dashboard: control via reservoir storage?
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Wetropolis dashboard: control via reservoir storage?
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GitHub repository: hydraulic wetro
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Future: WetroDA

Tom Kent University of Leeds

Wetropolis modelling



Thanks very much for your attention ... any questions?
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Research: interests

Mathematical and statistical modelling of atmospheric and environmental
phenomena, including:

I geophysical fluid dynamics;

I numerical methods (in particular for hyperbolic problems);

I hydraulic and shallow water-type modelling;

I numerical weather prediction and (ensemble-based) data
assimilation;

I flood modelling and mitigation;

I statistical downscaling and bias correction.
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