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NWP and DA: from large- to convective-scale to ‘idealised’

DA techniques need to evolve in order to keep up with the developments in
high-resolution NWP

I increasing resolution is not a panacea: ‘grey zone’ presents many problems...

I more (nonlinear) dynamical processes such as convection, cloud formation, and
small-scale gravity waves, are resolved explicitly/partially

I breakdown of dynamical balances (e.g., hydrostatic and geostrophic) at smaller
scales

I ensemble-based methods: flow-dependent errors

It may be unfeasible, and indeed undesirable, to investigate the potential of DA
schemes on state-of-the-art NWP models. Instead idealised models can be employed
that:

I capture some fundamental processes

I are computationally inexpensive to implement

E.g., ‘Idealised’ models: hierarchy of complexity

I Lorenz (L63, L95, L2005, ... )

I SW/BV/QG models

I simplified NWP models
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Using idealised models: approach

1. introduce a physically plausible idealised model and implement numerically
I Kent et al. (2017): based on the rotating shallow water equations (SWEs)

and extending the model of Würsch and Craig (2014) for simplified
cumulus cloud dynamics

I investigate dynamics of the modified model and compare to those of the
classical shallow water theory

2. ensemble-based DA - relevant for convective-scale NWP?
I algorithm: (deterministic) EnKF with techniques to combat sampling errors
I for relevant experiments:

I dynamics: set-up, time- and length-scales, ...
I assimilation: tuning the observing system and ensemble configuration

in search of a ‘well-tuned’ experiment.
I diagnostics: error-spread statistics, CRPS, observational influence,

error-growth statistics...

Houtekamer and Zhang (2016): “The frontier of data assimilation is at the high
spatial and temporal resolution, where we have rapidly developing precipitating

systems with complex dynamics”.
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Model: summary [Kent et al., 2017: Tellus A]

Dynamics:

I when the fluid exceeds threshold heights, dynamics are altered to include a
representation of conditional instability (leading to a convective updraft) and
idealised moisture transport with associated downdraft and precipitation

I the disruption of large-scale balance principles: (i) breakdown of geostrophic
balance in the presence of convection and precipitation; and (ii) breakdown of
hydrostatic balance is implicitly enforced by the modified pressure

I initiation of daughter cells away from the parent cell by gravity wave
propagation, and convection downstream from an orographic ridge.

Numerics:

I novel, robust and efficient scheme for numerical integration of the model, based
on the discontinuous Galerkin finite element method (DGFEM) including
methods to ensure well-balancedness and non-negativity of h and r.

I discretises the flow domain into Nel elements (defining the horizontal resolution
of the model) and uses a dynamic time-step that guarantees stability while
allowing for gains in efficiency (i.e., a larger time step) when possible.
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Ensemble-based DA for idealised models

GOAL: show that the idealised fluid model provides an interesting testbed for
investigating DA algorithms in the presence of convection and precipitation.

I.e., demonstrate a well-tuned idealised ensemble forecast-assimilation system using
the model and elucidate its relevance for convective-scale NWP

State-of-the-art
ensemble-based
convective-scale NWP
and DA: see, e.g.,
Gustaffson et al. (2018).
What are we aiming for?

Aspect Operational system
Forecast resolution O(1 km)
Update frequency O(1 hr)
Ensemble size, N O(10− 100)
# of observations, p O(107)
State dimension, n O(109)
Rank-deficiency N � p� n
Observation operator Nonlinear
Localization (horiz.) O(10− 100 km)
Inflation I Adaptive/Multipl.
Inflation II Additive
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Diagnostics: Well-tuned?

Tuning (important!):

I operational systems require a great deal of tuning in order to perform optimally

I consider the whole system: forecast model, the observing system, and the
assimilation algorithm

I process of developing and arriving at a ‘well–tuned’ system deserves attention in
an idealised setting – what can we learn?

I process: iterative adjustments to the observing system and ensemble
configuration while monitoring measures for both system performance and, in
the case of idealised experiments, relevance.

1. RMSE of the ensemble mean vs. ensemble spread (SPR): a well-configured
ensemble (i.e., sufficiently spread) is crucial to providing an adequate estimation
of forecast error. GOAL: SPR/RMSE ∼ 1.

2. continuous ranked probability score (CRPS): a summary performance measure
for probabilistic (ensemble) forecasts. GOAL: low CRPS values.

3. observational influence diagnostic (OID, after Cardinali et al., 2004): sensitivity
of the analysis to observations (∼ 18% in global NWP; 20− 40% in high-res.
NWP). GOAL: 20% / OID / 40%.

4. error-growth statistics: specifically error-doubling time Td (O(1 day) in global
NWP; O(1 hr) in high-res. NWP). GOAL: Td ∼ O(1 hr).
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Idealised experiments: flow over topography

Dynamics: scales and set-up
I non-rotating, supercritical (non-dim. parameters: Ro =∞, Fr = 1.1)
I length of domain ∼ 500 km: then Nel = 200 implies forecast resolution of
∼ 2.5km and n = dim(x) = 600.

I topography: superposition of sinusoidal waves in part of the domain
I ICS: flat (h+ b = 1) with ‘westerly’ wind (hu = 1) and no rain hr = 0. BCs:

periodic.

Assimilation: twin experiments with (deterministic) EnKF (Sakov and Oke, 2008)
I imperfect model scenario: ‘nature’ run is generated at a finer resolution than the

forecast model: Nnat
el = {400, 800}

I cycled DA for 48hrs with update frequency of {15, 30, 60} minutes
I variables are observed directly (hence the observation operator is linear, H = H)

with specified error σ = (σh, σu, σr) and spatial density in model-space of 40
grid points (∼ 100km on forecast grid); i.e., every variable is observed at five
(equally spaced and constant) locations, so that p = 15.

I to ensure rank–deficiency (N < p < n), employ an ensemble with 10 members.

I Filter configuration: making it work!
I Covariance localisation: length-scale (cf. Gaspari-Cohn)?
I Covariance inflation: adaptive (RTPS, RTTP; for sampling error) and

additive (diagonal Q; for model error)?
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An idealised forecast–assimilation system: imperfect model scenario.

Variables h (top), u (middle), and r (bottom) from the forecast model (left, with
Nel = 200) and the nature run (right, with Nel = 800). The forecast trajectory is
smoother and exhibits ‘partially-resolved’ convection and precipitation while the nature
run has sharper ‘resolved’ features and is a proxy for the truth.
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Combinations of the tuning parameters define a single experiment, totalling 2880:

Nature Nnat
el {400, 800}

Update frequency [mins] {15, 30, 60}
Localisation scale, Lloc {0.01, 0.5, 1, 1.5, 2, 3, 4, 6}
Inflation: RTPS { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
Additive inflation γa {0.01, 0.05, 0.1, 0.25, 0.5, 1}
Total # of experiments 2880

Observing system: defined by the update frequency and resolution of the nature run
(as well as obs. error and density)

I 6 observing systems with 480 experiments in each
I experiments in each observing system assimilate the same observations for

consistency

Filter configuration: defined by the localisation and inflation factors.

Number of experiments (out of 480) in which the filter does not diverge for a given
observing system:

15 min 30 min 60 min Total
2:1 381 387 4 772
4:1 121 109 1 231

Total 502 496 5 1003
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Experiments with the [2:1 – 30min] observing system: spread-error statistics for the
forecast (left) and the difference in RMS error of the forecast and analysis (right).
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Experiments with the [2:1 – 15min] observing system: spread-error statistics for the
forecast (left) and the difference in RMS error of the forecast and analysis (right).
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Experiments with the [2:1 – 30min] (left) and [2:1 – 15min] (right) observing system:
observational influence diagnostic. Recall: target is 20% / OID / 40%.
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loc 6.0 add 0.1 rtpp 0.5 rtps 0.5

Domain-averaged RMS error (dashed) and
spread (solid) time series for the forecast
(red) and analysis (blue) ensemble: h
(top), u (middle), and r (bottom).

I each series comprises 96 cycles (i.e.,
48 hours updated every 30mins);

I time-averaged values are given in the
top-left corner of each panel;

I the ensemble spread is similar in
magnitude to the RMSE of the
ensemble mean for both the forecast
(red) and analysis (blue);

I the filter produces an analysis
ensemble with lower error than the
forecast ensemble for all model
variables.
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Right: domain-averaged CRPS time series for
the forecast (red) and analysis (blue) ensemble:
h (top), u (middle), and r (bottom).

I each series comprises 96 cycles (i.e., 48
hours updated every 30mins);
time-averaged values are given in the
top-left corner of each panel;

I on average, the assimilation update
marginally improves the reliability of the
ensemble.

Below: domain-averaged OID time series
(overall and for each variable)
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Ensemble trajectories (blue) and their mean (red for forecast; cyan for analysis),
pseudo-observations (green circles with corresponding error bars), and nature run

(green solid line) after 65 cycles. Left: forecast. Right: analysis.
loc 6.0 add 0.1 rtpp 0.5 rtps 0.5
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Ensemble trajectories (blue) and mean (red forecast; cyan analysis), pseudo-obs.
(green circles with error bars), and nature run (green solid line) after 51 cycles. Left:

forecast. Right: analysis. Observe every 40 gridpoints: ∼ 100km.
loc 2.0 add 0.25 rtpp 0.5 rtps 0.6
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Ensemble trajectories (blue) and mean (red forecast; cyan analysis), pseudo-obs.
(green circles with error bars), and nature run (green solid line) after 51 cycles. Left:

forecast. Right: analysis. Observe every 20 gridpoints: ∼ 50km.
loc 2.0 add 0.25 rtpp 0.5 rtps 0.6
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Error-doubling time Td

I moist convection severely limits
mesoscale predictability: for
limited–area cloud–resolving
models: mean error–doubling
time ∼ 4 hours.

I ensemble forecasts initialised
with the analysis perturbations
from a well-tuned experiment
should exhibit characteristic error
growth rates on this timescale

I compute Td for an idealised
ensemble prediction system by
running numerous staggered
forecasts initialised with the
analysis increments

NOTE: different set-up
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‘Protocol’ revisited and results

Kent et al., 2017: idealised model simulates some fundamental dynamical processes
associated with convecting and precipitating weather systems, suggesting that it is a
suitable candidate for investigating DA algorithms at convective scales.

Aspect Operational system Our idealised system Relevant?
Forecast resolution O(1 km) 2.5 km 3
Update frequency O(1 hr) 30 mins 3
Ensemble size, N O(10− 100) 10 –
# of observations, p O(107) 15 N/A
State dimension, n O(109) 600 N/A
Rank-deficiency N � p� n N < p < n 3
Observation operator Nonlinear Linear 7
Localization O(10− 100 km) ∼ 100 km 3
Inflation I Adaptive RTPS = 0.4− 0.7 –
Inflation II Additive γa = 0.1− 0.5 –
SPR/RMSE ∼ 1 ∼ 1 3
Observational influence 20% / OID / 40% ∼ 25% 3
Error-doubling time, Td O(1 hr) ∼ 4 hrs 3

This study: advocates this further by conducting numerous forecast-assimilation
experiments, providing a critical assessment of their performance, and addressing their
relevance for convective-scale NWP.
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Conclusion + ideas

Summary:

I the idealised fluid model provides an interesting testbed for forecast-assimilation
experiments with characteristics relevant for convective-scale NWP

I tuning: for performance and relevance

I filter performs adequately (given the relatively simple set-up and strong
nonlinearities of the model): certain configurations yield ensembles that estimate
the forecast errors well

I additive and adaptive inflation crucial for satisfactory filter performance;
localisation also crucial due to rank-deficiency (limited ensemble size)

I observational influence can be tuned to be similar to that of operational NWP
and error-growth rates comparable to convective-scale NWP systems

I myriad set-ups to investigate: valuable learning process in a clean environment!

Ideas / future work:

I exploring satellite DA (Cantarello et al., X4.291 this session 14:00-15:45)

I investigating ‘representation’ errors

I nonlinear DA: comparison of methods etc.

I import into DA frameworks...?
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GitHub repository: modRSW EnKF
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Thanks very much for your attention ... questions?
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Modified SWEs

I two threshold heights Hc < Hr: when fluid exceeds these heights, different
mechanisms kick in and alter the classical SW dynamics

I modifications to the effective pressure gradient (via SW pressure: p(h) = 1
2
gh2)

in the momentum equation
I extra equation for the conservation of model ‘rain’ to close the system

hb Hc

p(Hc − b)

Below Hc Above Hc

P (h; b)

p(h)

Modified pressure P (h; b):
p(Hc − b) = 1

2
g(Hc − b)2 above

the threshold Hc is lower than the
standard pressure p(h) = 1

2
gh2,

thus forcing the fluid to rise where
h+ b > Hc.

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + P ) + hc20∂xr − fhv = −Q∂xb,
∂t(hv) + ∂x(huv) + fhu = 0,

∂t(hr) + ∂x(hur) + hβ̃∂xu+ αhr = 0,

where P = P (h; b) =

{
p(Hc − b), for h+ b > Hc,

p(h), otherwise,

Q = Q(h; b) =

{
p′(Hc − b), for h+ b > Hc,

p′(h), otherwise,

and β̃ =

{
β, for h+ b > Hr, ∂xu < 0,

0, otherwise.
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Non-dimensionalised modRSW equations

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + P ) +Q∂xb+ hc̃0
2∂xr −

1

Ro
hv = 0,

∂t(hv) + ∂x(huv) +
1

Ro
hu = 0,

∂t(hr) + ∂x(hur) + hβ̃∂xu+ α̃hr = 0,

where:

P (h, b) =
1

2Fr2
[
h2 + ((Hc − b)2 − h2)Θ(h+ b−Hc)

]
,

Q(h, b) =
1

Fr2
[h+ (Hc − b− h)Θ(h+ b−Hc)] ,

β̃ = βΘ(h+ b−Hr)Θ(−∂xu).

Θ(x) = 1 if x > 0; and 0 if x ≤ 0, and the following parameters are introduced:

Fr =
V0√
gH0

, Ro =
V0

fL0
, c̃0

2 =
c20
V 2
0

, α̃ =
L0

V0
α.
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Some theoretical aspects

Eigenanalysis: shallow water systems are hyperbolic, and can thus be solved via a
range of numerical recipes for hyperbolic systems. What about the modified system?

∂tUUU + ∂xFFF (UUU) +GGG(UUU)∂xUUU +SSS(UUU) = 0,

Hyperbolicity determined by eigen-structure: (all eigenvalues must be real).
Eigenvalues of the system are determined by the Jacobian matrix ∂FFF/∂UUU +GGG(UUU):

λ1,2 = u±
√
∂hP + c20β̃, λ3,4 = u.

Since P (h; b) is non-decreasing and β̃ non-negative, the eigenvalues are real. Hence,
the modified SW model is (weakly) hyperbolic.

Wave speeds: waves travelling through (saturated) regions of convection slow down

I h+ b < Hc: ∂hP = gh, β̃ = 0 implies standard eigenvalues λ1,2 = u±
√
gh

I Hc < h+ b < Hr: ∂hP = 0, β̃ = 0 implies modified eigenvalues λ1,2 = u

I Hr < h+ b: ∂hP = 0 and β̃ = β implies modified eigenvalues λ1,2 = u±
√
c20β
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Scaling

For a given Fr potential characteristic scales of the dynamics can be analysed and,
where possible, likened to high-resolution NWP.

I Consider a fixed length of domain L0 = 500 km and velocity-scale
V0 ∼ 20 ms−1, implying a time-scale T0 ∼ 25000 seconds (∼ 6.94... hours).
Thus, one hour is equal to 0.144 non-dimensional time units.

I Fr = 1.1 implies gH0 ∼ 330 m2s−2. We note that gravity g is actually a
reduced gravity g′, and impose a height scale of H0 ∼ 500 m.

I This implies a reduced gravity g′ ∼ 0.66 ms−1 and is justified as follows. Taking
the average air density in the layers 0-500 and 500-1500 meters from the air
density profile of the International Standard Atmosphere*,
ρ0−500m = 1.196 kg m−3 and ρ500−1500m = 1.113 kg m−3, gives a reduced
gravity of g′ ∼ 0.68 ms−1.

I The threshold height Hc mimics the Level of Free Convection (LFC), which can
be on the order of several hundred meters in convectively unstable conditions.

*https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118568101.app2
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Two popular flavours of adaptive inflation: ‘Relaxation To Prior Perturbation’
(RTTP) and ‘Relaxation To Prior Spread’ (RTPS) methods.

RTTP: relaxes analysis perturbations Xa
j back to the forecast perturbations Xf

j

independently at each analysis point:

Xa
j ← (1− α)Xa

j + αXf
j , (2)

where α ∈ [0, 1] is a tuneable parameter.This amounts to a combination of
multiplicative and additive inflation.

RTPS: relaxes the analysis ensemble spread back to the forecast spread:

σa ← (1− α)σa + ασf , (3)

where σ is the spread at each gridpoint (i.e., standard deviation)and α ∈ [0, 1] is a
tuneable parameter. This is a purely multiplicative form of inflation.

NOTE: the DEnKF is equivalent to the ‘no-perturbation’ EnKF with implicit RTPP
adaptive inflation with α = 1/2
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Additive inflation comprises adding random Gaussian perturbations ηj ∼ N (0, γaQ)
during, or at the end of, the forecast step:

xj(ti) =M(xj(ti−1)) + ηj , j = 1, ..., N, (4)

where the forecast–model error matrix Q is prescribed from some knowledge of the
modeling system and γa is a tuneable parameter controlling the overall magnitude of
the sample perturbations. How one best defines Q is an open question; often a static
matrix developed offline from historical analysis increments. In this study, Q is
diagonal and contains the square of the (imposed) observational error of each variable:

Q =

 σσσ2
h 0 0
0 σσσ2

u 0
0 0 σσσ2

r

 , (5)

where σσσ2
h, σσσ2

u and σσσ2
r are diagonal matrices of size Nel ×Nel. In order not to

introduce bias into the model state x(ti), an unbiased additive inflation η̃j is
computed and used in (??) by subtracting the ensemble averaged additive inflation η:

η̃j = ηj − η. (6)

Additive inflation does not try to represent the model error explicitly, but acts in some
sense as a lower bound for the forecast error, thus preventing filter divergence.
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Top left: Gaspari-Cohn taper functions
ρ = ρ(Lloc) for various Lloc values, which
define a lengthscale in model space
(x-axis). No localization (blue)
corresponds to Lloc = 0.01; Lloc = 1
(green) defines a lengthscale of
Nel/Lloc = 200 grid points. Increasing
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reduction to zero. Top right: banded
localization matrix ρρρ defined by Lloc = 1.5,

which has the same dimension as Pf
e and

is a block 3× 3 matrix for our 3-variable
system. Bottom left: a time-dependent

correlation matrix (i.e., normalized Pf
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generated by a 10-member ensemble.
Bottom right: the localized correlation

matrix (i.e., normalized Pf
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e )
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matrices. Long range correlations deemed
spurious are set to zero beyond a certain
distance in model space.
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Experiments with the [2:1 – 30min] observing system: RMSE error of the forecast
ensemble mean (left) and the spread of the forecast ensemble (right).
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Experiments with the [2:1 – 15min] observing system: RMSE error of the forecast
ensemble mean (left) and the spread of the forecast ensemble (right).
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Experiments with the [2:1 – 30min] observing system: CRPS for the forecast ensemble
(left) and the difference in CRPS of the forecast and analysis (right).
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Experiments with the [2:1 – 15min] observing system: CRPS for the forecast ensemble
(left) and the difference in CRPS of the forecast and analysis (right).
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Numerics: methodology

I Rhebergen et al. (2008) developed a novel discontinuous Galerkin
(DG) finite element framework for non-conservative hyperbolic
system of PDEs, deals robustly with high nonlinearity and
non-conservative products, GGG(UUU)∂xUUU

I we combine this with the scheme of Audusse et al. (2004) to
discretise topography that maintains well-balancedness and preserves
non-negativity of fluid depth and rain variable
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