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1. Background 2. Approach

Data assimilation (DA) techniques need to
evolve In order to keep up with the devel-

opments in convection-permitting Numer- e based on the shallow water equations (SWEs).

ical Weather Prediction (NWP) models. It e produce ‘synthetic observations’ from the model variables for use in DA experiments
is often unfeasible, and indeed undesirable, to (linear and nonlinear).

investigate the potential of new data assimi- |
lation schemes on operational forecasting sys- 2. Construct some DA experiments based on ensemble (En) and variational

tems. Instead, idealised models can be em- (VAR) techniques.
ployed that capture the fundamental features of
convective-scale dynamics while remaining
computationally inexpensive, thus allowing an
extensive investigation of the proposed scheme.

1. Introduce a physically plausible idealised model and implement numerically:.

e integrate model into Met Office’s Python/Fortran framework for idealised DA experiments.

e investigate potential for new control variable transtorm, e.g. based on scale separation
(heterogeneous background error covariance).

5. Theoretical and numerical aspects

3. Model: SWEs with ‘rain’

We outline an idealised NWP model (after [1]) The quasi-2D rotating symmetric system can be written in a non-conservative formulation:

based on the SWEs which is designed to rep-
resent an idealised atmosphere with moist

9;U + 8,F(U) + G(U)3,U + S(U) = 0

convection. Moisture is incorporated into the with:
traditional SWEs by the introduction of a ‘rain - ] ) ] ) ] )
mass fraction’ variable, r, which acts on the h hu 0 0O 0 0 O 0
momentum equation (1b) via the geopotential, hu hu? + p(h) —(f)?“ 0 cc 0 gh — fho
and is allowed to precipitate via an additional U= |hr|, FU)= hur , GU)=|-Bu B 0 0 0], SWU)=| ahr
conservation equation (1c). hv huv 0O 0 0 0 O fhu
Oth + 0, (hu) =0, (la) b . 0 - 0 00 0 0, U
Ot (hu) +8:1:(hu2 + p(h)) + ghdzb e valid non-conservative hyperbolic sys- e p(h) and E describe onset of convec-
+hcgOyr — fho =0, (1b) tem of partial differential equations. tion (updraft) and rain formation re-
~ B e solved numerically using a shock-capturing spectively.
Oy (hr) + Oy (hur) + h30,u+ ahr =0, (lc) finite volume/element framework |2|. e combines non-linearity due to the
0(hv) + Oy (huv) + fhu =0,  (1d) e deals robustly with high non-linearity and switches and the genuine hydrodynamic
0:b =0, (le) non-conservative products, G(U)9,U. non-linearity of the SWEs.

where p = p(h) is a pseudo-pressure defined by: .
6. Numerical results

Flow over topography (single ‘mountain’;

- {;gﬂg, for h + b > I,
p p—

59h?, otherwise, T = N thick black line) without rotation.
ooss! —uf e Model set-up (non-dimensionalised):
and: — characteristic scales: L = 500km,V =
.l _ 10m/s, H = 100m.
~ , for h+b> H, and 0,u < 0, ? . .
B(h,0ru) = {6 o + an “ 0.035 : — 500 gridcells, akin to 1km horizontal
0, otherwise. | resolution attained in convective-scale
. . . | NWP.
e h = fluid depth, (u,v) = V.elocmes, b = z .| _ critical heights: H. — 102m.H, —
bottom topography, » = rain mass frac- ° 105m
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tion; all as a function of (x,t).

e H. H, = threshold heights, above which _ oots|

convection and ‘rain’ processes occur.

e ¢; = gH,, a = rate of ‘rain’ removal (by

precipitation), 8 controls ‘rain’ formation,
f = Coriolis frequency, g = gravity.

— very large Rossby number (no rota-
tion); Froude number = 0.3.
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e Initially: height profile is flat, uniform flow
from west to east. As fluid exceeds: H.
L . there is upward forcing, H, ‘rain’ can form
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4. Why SWEs? lines correspond to time in minutes.

The traditional SWEs are:
e often used in the meteorological commu- 7. Next Steps

nity for modelling atmospheric circulation. e Further numerical tests and analysis of the
O fully nonlinear and Sufﬁciently chaotic for dynamical properties of the System, 11-
meaningful DA. cluding effect of rotation.
e admit gravity waves and have scale in- o Integrate model into the Met Office’s

teractions (fast/slow modes). Python/Fortran idealised DA modelling
e admit discontinuous solutions, akin to the framework (employed in recent DA study
propagation of atmospheric fronts. 3]).

The modified SWEs:
e artificially mimic conditional instabil-

ity (positive buoyancy) and the transport
of moisture.

e contain switches for the onset of convec-
tion and precipitation - realistic features
of operational NWP models.
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