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NWP and DA: from large- to convective-scale

Data Assimilation (DA) attempts to provide the optimal initial conditions for the
forecast model

I yields best estimate of the state of the atmosphere and its uncertainty using a
combination of forecast and observational information (and taking into account
their respective uncertainties)

I optimality of the initial state is crucial in such a highly nonlinear system with
limited predictability

I a great deal of attention is focussed on improving observing systems and
assimilation algorithms

High-resolution (convective-scale) NWP models are becoming the norm

I more dynamical processes such as convection, cloud formation, and small-scale
gravity waves, are resolved explicitly/partially

I increasing resolution is not a panacea: ‘grey zone’ presents many problems
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Using idealised models

DA techniques need to evolve in order to keep up with the developments in
high-resolution NWP

I breakdown of dynamical balances (e.g., hydrostatic and semi/quasi-gestrophic)
at smaller scales

I strongly nonlinear processes associated with convection and
moisture/precipitation

I move towards ensemble-based methods: flow-dependent errors, development of
ensemble prediction systems...

It may be unfeasible, and indeed undesirable, to investigate the potential of DA
schemes on state-of-the-art NWP models. Instead idealised models can be employed
that:

I capture some fundamental processes

I are computationally inexpensive to implement

‘Toy’ models:

I Lorenz (L63, L95, L2005, ... )

I BV/QG models

I simplified NWP models
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Using idealised models: approach

1. Introduce a physically plausible idealised model and investigate
numerically.

I based on the rotating shallow water equations (SWEs) and the model
of Würsch and Craig (2014) for simplified cumulus cloud dynamics

I compare dynamics of the modified model to those of the classical
shallow water theory

2. Ensemble-based DA - relevant for convective-scale NWP?
I algorithm: perturbed obs. EnKF
I for meaningful experiments:

I dynamics: relevant time- and length-scales
I DA: “tuning” the observing system and ensemble configuration
I exploiting the model’s strong non-linearity
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An idealised model of convective-scale NWP

Moist convection... is many things (Stevens 2005)

I Manifest as clouds, it comprises a variety of regimes spanning a vast range of
spatial and temporal scales, with diverse and nonlinear physical processes in each
regime...

I state-of-the-art numerical models of the atmosphere struggle with their
treatment of moist convection

I one can seek to represent some of the fundamental processes and aspects of
moist convection in a relatively simple modelling environment.

Idealised model: concept

I “It is almost as if the fluid is magically transformed into another form once it
crosses a certain threshold...” (Stevens again)

I “moist convection can in many instances be thought of as a two-fluid problem,
where one fluid (unsaturated air) can transform itself into another (saturated
air) simply through vertical displacement.”

I Würsch and Craig (2014) model: the single–layer shallow water equations are
modified when the height of the fluid crosses certain thresholds

I the behaviour of the flow is transformed from the standard shallow water
dynamics to a simplified representation of convection, with associated
precipitation effects
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1. SWEs

1.5D rotating SWEs on an f -plane with no

variation in the y-direction (∂y = 0):

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + p(h))− fhv = −gh∂xb,
∂t(hv) + ∂x(huv) + fhu = 0,

where p(h) is an effective pressure: p(h) = 1
2
gh2.

I derived from the inviscid, incompressible, hydrostatic equations of motion

I often used in meteorology for idealised models of atmospheric circulation

I admit gravity waves (important for convection) and, in the presence of rotation,
have scale interactions (fast gravity wave modes and slow geostrophic modes)

I admit discontinuous solutions, akin to the propagation of atmospheric fronts
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1. SWEs: an extension

1.5D rotating SWEs on an f -plane with no

variation in the y-direction (∂y = 0):

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + p(h))− fhv = −gh∂xb,
∂t(hv) + ∂x(huv) + fhu = 0,

where p(h) is an effective pressure: p(h) = 1
2
gh2.

Aim: modify the SWEs to include more complex dynamics relevant for the
‘convective-scale’, extending the model employed by Würsch and Craig (2014)

I convective updrafts - artificially mimic conditional instability (positive buoyancy)
I idealised representation of precipitation (‘rain’ mass fraction), including source

and sink
I switches for the onset of convection and precipitation - realistic (and highly

nonlinear) features of operational NWP models
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Modified SWEs

Ingredients:
I two threshold heights Hc < Hr: when fluid exceeds these heights, different

mechanisms kick in and alter the classical SW dynamics
I modifications to the effective pressure gradient (equivalently, geopotential

gradient) in the momentum equation
I extra equation for the conservation of model ‘rain’ to close the system

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + P ) + hc20∂xr − fhv = −Q∂xb,
∂t(hv) + ∂x(huv) + fhu = 0,

∂t(hr) + ∂x(hur) + hβ̃∂xu+ αhr = 0,

where P = P (h; b) =

{
p(Hc − b), for h+ b > Hc,

p(h), otherwise,

Q = Q(h; b) =

{
p′(Hc − b), for h+ b > Hc,

p′(h), otherwise,

and β̃ =

{
β, for h+ b > Hr, ∂xu < 0,

0, otherwise.
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Some theoretical aspects

Eigenanalysis: shallow water systems are hyperbolic, and can thus be solved via a
range of numerical recipes for hyperbolic systems. What about the modified system?

∂tUUU + ∂xFFF (UUU) +GGG(UUU)∂xUUU +SSS(UUU) = 0,

Hyperbolicity determined by eigenstructure (all eigenvalues must be real). Eigenvalues
of the system are determined by the Jacobian matrix ∂FFF/∂UUU +GGG(UUU):

λ1,2 = u±
√
∂hP + c20β̃, λ3,4 = u.

Since P (h; b) is non-decreasing and β̃ non-negative, the eigenvalues are real. Hence,
the modified SW model is (weakly) hyperbolic.

Wave speeds: waves travelling through (saturated) regions of convection slow down

I h+ b < Hc: ∂hP = gh, β̃ = 0 implies standard eigenvalues λ1,2 = u±
√
gh

I Hc < h+ b < Hr: ∂hP = 0, β̃ = 0 implies modified eigenvalues λ1,2 = u

I Hr < h+ b: ∂hP = 0 and β̃ = β implies modified eigenvalues λ1,2 = u±
√
c20β
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Numerics

Methodology:

I Rhebergen et al. (2008): a novel discontinuous Galerkin (DG) finite element
framework for non-conservative hyperbolic system of PDEs, deals robustly with
high nonlinearity and non-conservative products, GGG(UUU)∂xUUU

I combine with the scheme of Audusse et al. (2004) to discretise topography:
maintains well-balancedness and preserves non-negativity of fluid depth and rain
variable

Experiments: based on (i) a Rossby adjustment scenario, and (ii) non-rotating flow
over topography. To illustrate the effect that exceeding the threshold heights
Hc < Hr has on the dynamics, a hierarchy of model ‘cases’ is employed:

I Case I: h+ b < Hc always (effectively setting Hc, Hr →∞). The model reduces
to standard RSWEs if hr = 0 initially.

I Case II: h+ b < Hr always, but may exceed Hc. This is considered a ‘stepping
stone’ to the full model to isolate the effect of the first threshold exceedance.

I Case III: h+ b may exceed both Hc, Hr. This is the idealised fluid model with
convection and rain processes to be used for convective-scale DA experiments.

Solve non–dimensionalised equations, with 2 prognostic parameters: Ro and Fr.
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(i) Rossby adjustment scenario

I rotating flow (Ro = 0.1,Fr = 1) with flat bottom topography (b ≡ 0)
I the free surface height h is disturbed from its rest state by a transverse jet, i.e.,

fluid with an initial constant height profile is subject to a localised v-velocity
distribution

I to adjust to this initial momentum imbalance, the height field evolves rapidly,
emitting inertia gravity waves and shocks that propagate out from the jet and
eventually reach a state of geostrophic balance.
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Figure : Time evolution of the height profile: case I (left), II (middle), III (right).
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Snapshots of h(x, t) and r(x, t) for the
Rossby adjustment process with initial
transverse jet (Ro = 0.1,Fr = 1):

I case I (left), II (middle), and III
(right)

I Top row: Hovmöller plots for h

I Subsequent rows: profiles of h
(black line; left axis) and r (blue
line; right axis) at different times
denoted by the dashed lines in
the top row
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Figure : Hovmöller plots for the Rossby adjustment process with initial transverse jet
(Ro = 0.1,Fr = 1), highlighting the conditions for the production of rain: case III.
From left to right: h > Hr, −∂xu > 0, and r(x, t).
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I Top row: Hovmöller diagram
plotting the evolution of the
measure of departure from
geostrophic balance g∂xh− fv:
light shading denotes regions
close to geostrophic balance

I Subsequent rows: profiles of fv
(red) and g∂xh (black) at
different times denoted by the
dashed lines in the top row

I case I (left), II (middle), and III
(right)
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(ii) Flow over topography

Consider non-rotating flow (no transverse velocity) over a parabolic ridge:

b(x) =

bc
(

1−
(
x−xp
a

)2)
, for |x− xp| ≤ a;

0, otherwise;

where bc is the height of the hill crest, a is the hill width parameter, and xp its
location in the domain.

I shallow water flow over topography has been extensively researched (see, e.g.,
Baines 1998)

I often used as a test case in numerical studies owing to the range of dynamics
(dependent on Froude number Fr), including shocks, and the existence of
analytical non-trivial steady state solutions

I supercritical flow Fr > 1: the fluid depth increases over the ridge (as opposed to
subcritical flow (Fr < 1) in which the depth decreases over the ridge) and a
shock wave propagates at a height above the rest depth to the right of the ridge
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Flow over topography (Fr = 2,
bc = 0.5, a = 0.05, and xp = 0.1):

I profiles of h+ b, b (black; left
y-axis), rain r (blue; right
y-axis), and exact steady-state
solution for h+ b (red dashed) at
different times

I case I (left), II (middle), and III
(right)

I dotted lines denote the threshold
heights for convection and rain
Hc < Hr
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Figure : Hovmöller plots for flow over topography (Fr = 2), highlighting the
conditions for the production and subsequent evolution of rain: case III. From left to
right: h+ b > Hr, −∂xu > 0, and r(x, t).
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Flow over topography (Fr = 2,
bc = 0.4, a = 0.05,
(xp1 , xp2 ) = (0.0875, 0.2625):

I profiles of h+ b, b (black; left
y-axis), rain r (blue; right
y-axis), and exact steady-state
solution for h+ b (red dashed) at
different times

I case I (left), II (middle), and III
(right)

I dotted lines denote the threshold
heights for convection and rain
Hc < Hr
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Figure : Hovmöller plots for flow over two ridges (Fr = 2), highlighting the conditions
for the production and subsequent evolution of rain: case III. From left to right:
h+ b > Hr, −∂xu > 0, and r(x, t).
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Dynamics: summary

I changes to the dynamics are brought about by the exceedance of two threshold
heights Hc and Hr, akin to (i) the level of free convection, and (ii) the onset of
precipitation

I when the fluid exceeds these heights, the classical shallow water dynamics are
altered to include a representation of conditional instability (leading to a
convective updraft) and idealised moisture transport with associated downdraft
and precipitation effects

I the model reduces exactly to the standard SWEs in non-convecting,
non-precipitating regions

I the model also exhibits important aspects of convective-scale dynamics relating

to the disruption of large-scale balance principles
I Rossby adjustment scenario illustrates the breakdown of geostrophic

balance in the presence of convection and precipitation
I breakdown of hydrostatic balance is implicity enforced by the modified

pressure when the level of free convection is exceeded

I able to simulate other features related to convecting and precipitating weather
systems, such as the initiation of daughter cells away from the parent cell by
gravity wave propagation, and convection downstream from an orographic ridge.
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Using idealised models: approach

1. Describe a physically plausible idealised model and implement
numerically X

I based on the rotating shallow water equations (SWEs) and the model
of Würsch and Craig (2014) for simplified cumulus cloud dynamics X

I compare dynamics of the modified model to those of the classical
shallow water theory X

2. Ensemble-based DA - relevant for convective-scale NWP?
I algorithm: perturbed obs. EnKF
I for meaningful experiments:

I dynamics: relevant time- and length-scales
I DA: “tuning” the observing system and ensemble configuration
I exploiting the model’s strong non-linearity

Houtekamer and Zhang (2016): “The frontier of data assimilation is at
the high spatial and temporal resolution, where we have rapidly
developing precipitating systems with complex dynamics”.
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2. Ensemble-based DA for idealised models

GOAL: show that the idealised fluid model provides an interesting testbed for
investigating DA algorithms in the presence of convection and precipitation.

I.e., demonstrate a well-tuned idealised ensemble forecast-assimilation system using
the model and elucidate its relevance for convective-scale NWP

1. Forecast model: xxx(t) =M(xxx(t− 1))
I non-linear discrete model M provided by the idealised fluid model

described in part one
I (imperfect) twin-model setting: forecasts and nature run obtained by

integrating M at different resolutions

2. Assimilation algorithm: perturbed obs. EnKF
I tune the observing system (e.g., observation error, density) and ensemble

configuration (e.g., inflation (additive and multiplicative), localisation)
I seek to mimic (where possible) characteristics relevant for NWP (e.g.,

observational influence, update frequency)
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2. Ensemble-based DA for idealised models

I What constitutes a well-tuned experiment?
I RMSE of the ensemble mean vs. ensemble spread: a well-configured

ensemble (i.e., sufficiently spread) is crucial to providing an adequate
estimation of forecast error

I observational influence diagnostic (after Cardinali et al. (2004)): most
weight comes from the background (∼ 82% in global NWP, 60-85% (?) in
high-res. NWP)

OI =
tr(HK)

p

I others: CRPS, error-doubling time...

I How is this achieved?
I addressing the rank / sampling issues due to small ensemble size:

I ensemble inflation techniques: multiplicative (for underestimation of
variances) and/or additive (for model error)

I localisation (PPP floc ← ρloc ◦PPP f ) applied to damp spurious long-range
correlations

I tuning the observing system: what to observe? how often? with how much
noise?
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Idealised EnKF experiments: flow over topography

Dynamics: time- and length-scales

I non-dimensional parameters: Ro =∞, Fr = 1.1 (supercritical)

I length of domain ∼ 500 km: 200 gridcells implies forecast resolution of ∼ 2.5km
and dim(x) = 600

I topography: superposition of sinusoidal waves in part of the domain (á la the
Pennines!)

I BCs: periodic

Assimilation: set-up

I hourly cycling for 48hrs (NOTE: 1 non-dim T ∼ 7hrs)

I fix the number of ensemble members N = 40 and permute through various

tuning parameters relating to the filter configuration and observing system:
I obs. noise σσσo = (σh, σu, σv , σr)
I obs density (e.g., observe every 20 gridcells ∼ 50km)
I localisation length-scale
I inflation factors
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Imperfect model

Ensemble Kalman filter: imperfect model setting - nature run at higher resolution...

Forecast: 200 cells (“smoother features”)
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Additive inflation

I additive inflation consists of adding random Gaussian perturbations
ηηηj ∼ N (0, γQQQ) during the forecast step:

xxxj(t) =M(xxxj(t− 1)) + ηjηjηj , j = 1, ..., N

I acts in some sense as a lower bound for the forecast error, thus preventing filter
divergence

I addition of random Gaussian noise at each analysis time tends to erase the
non-Gaussian higher moments non-linear error growth may have generated

(Excellent) EnKF review paper by Houtekamer and Zhang (2016):

A combination of additive and multiplicative inflation is “critical for maintaining

sufficient ensemble spread and good overall performance” ...
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Relevant for NWP?

I Below: Obs. influence diagnostic (%)

I Right: Error-doubling time statistics
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DA: summary

I the idealised fluid model provides an interesting testbed for forecast-assimilation

experiments with characteristics relevant for convective-scale NWP
I sufficient error growth for meaningful hourly-cycled DA at the

kilometre–scale
I varied dynamics throughout with convection and precipitation occuring due

to the topographic forcing only (no external forcing required)

I EnKF performs adequately (given the simple set-up and strong nonlinearities of

the model)
I certain filter configurations yield ensembles that adequately estimate the

forecast errors
I additive inflation crucial for maintaining satisfactory filter performance
I no need for localisation since N > p in the experiments shown (in fact,

localisation degrades the analysis)
I reasonable (i.e., not too large) multiplicative inflation factors 1.01− 1.05
I the overall observational influence can be tuned to be similar to that of

operational NWP
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DA: summary and ideas / future work

Numerous experimental set–ups to explore and concepts to investigate...

I comparison of algorithms: how does the EnKF perform against, e.g., a hybrid
EnVAR method or a fully nonlinear filter?

I change the way the system is observed, e.g.,
I observe a subset of the variables only
I observe nonlinearly (e.g., wind speed and direction)
I mimic satellite observing systems with a radiative transfer model

I goal: achieve a set-up that requires localisation, e.g., by observing h only

Plan: integrate the model into EMPIRE (Employing MPI for Researching Ensembles),
an open-source repository for interfacing numerical models with DA methods (Browne
and Wilson (2015)).
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Thanks very much for your attention ...
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Non-dimensionalised modRSW equations

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + P ) +Q∂xb+ hc̃0
2∂xr −

1

Ro
hv = 0,

∂t(hv) + ∂x(huv) +
1

Ro
hu = 0,

∂t(hr) + ∂x(hur) + hβ̃∂xu+ α̃hr = 0,

where:

P (h, b) =
1

2Fr2
[
h2 + ((Hc − b)2 − h2)Θ(h+ b−Hc)

]
,

Q(h, b) =
1

Fr2
[h+ (Hc − b− h)Θ(h+ b−Hc)] ,

β̃ = βΘ(h+ b−Hr)Θ(−∂xu).

Θ(x) = 1 if x > 0; and 0 if x ≤ 0, and the following parameters are introduced:

Fr =
V0√
gH0

, Ro =
V0

fL0
, c̃0

2 =
c20
V 2
0

, α̃ =
L0

V0
α.
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Some theoretical aspects

I Shallow water systems are hyperbolic, and can thus be solved via a range of
numerical recipes for hyperbolic syststems. What about the modified system?

∂tUUU + ∂xFFF (UUU) +GGG(UUU)∂xUUU +SSS(UUU) = 0,

where:

UUU =

 hhuhv
hr

 ,FFF (UUU) =

 hu
hu2 + P
huv
hur

 ,GGG(UUU) =


0 0 0 0
−c20r 0 0 c20

0 0 0 0

−β̃u β̃ 0 0

 ,SSS(UUU) =

 0
Q∂xb− fhv

fhu
αhr


I Hyperbolicity determined by eigenstructure (all eigenvalues must be real).

Eigenvalues of the system are determined by the Jacobian matrix:

∂FFF/∂UUU +GGG(UUU) =


0 1 0 0

−u2 − c20r + ∂hP 2u 0 c20
−uv v u 0

−u(β̃ + r) β̃ + r 0 u

 ,
and its four eigenvalues are:

λ1,2 = u±
√
∂hP + c20β̃, λ3,4 = u.

I Since P (h; b) is non-decreasing and β̃ non-negative, the eigenvalues are real.
Hence, the modified SW model is (weakly) hyperbolic.Tom Kent University of Leeds
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DGFEM for modRSW

I TASK: convert the PDE of interest into its equivalent weak formulation using
the standard test function and integration approach

I PROBLEM: the presence of NCPs in the governing equations complicates this
somewhat because the weak solution in the classical sense of distributions does
not exist when the solution becomes discontinuous

I SOLUTION: to overcome the absence of a weak solution, Rhebergen et al.
(2008) employ DLM theory (after Dal Maso, LeFloch, and Murat 1995) for
NCPs which defines an NCP as a bounded measure in such a way to enable the
weak solution to be defined. This is achieved by considering a single NCP
g(u)∂xu, where g is a smooth function but u may admit discontinuities, and
defining a smooth regularization uε of the discontinuous u:

g(u)
du

dx
≡ lim
ε→0

g(uε)
duε

dx
= Cδxd , with C =

∫ 1

0
g(φ(τ))

∂φ

∂τ
(τ)dτ,

where δxd is the Dirac measure at the discontinuity xd and φ is a Lipschitiz
continuous path connecting the model states across the discontinuity, an artefact
of the regularization.
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I The one-dimensional flow domain Ω = [0, L] is divided into N open elements
Kk = (xk, xk+1) for k = 1, 2, ..., N with N + 1 nodes/edges
0 = x1, x2, ..., xN , xN+1 = L. Element lengths |Kk| = xk+1 − xk may vary.

I space-DGFEM weak formulation is obtained by (i) multiplying the each equation
of the system by an arbitrary test function w ∈ C1(Kk), generally continuous on
each element but discontinuous across an element boundary; and (ii) integrating
(by parts) over each element Kk ∈ Th and summing over all elements. The
space discretisation is achieved by replacing the exact model states UUU and test
functions w by approximations UUUh, wh in terms of polynomial basis function
expansions, with the order of the polynomials determining the order of the
scheme

I In one space dimension and considering cell Kk only at a given t, the weak form
reads:

0 =

∫
Kk

[w∂tUi − Fi∂xw + wGij∂xUj + wSi] dx

+
[
w(xLk+1)Ppi (UUULk+1,UUU

R
k+1)− w(xRk )Pmi (UUULk ,UUU

R
k )
]
,

where Ppi and Pmi are the numerical flux terms given by:

Ppi = PNCi +
1

2

∫ 1

0
Gij(φφφ)

∂φj

∂τ
dτ,

Pmi = PNCi −
1

2

∫ 1

0
Gij(φφφ)

∂φj

∂τ
dτ,
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I ... and the NCP flux through an element edge is:

PNCi (UUUL,UUUR) =


FLi −

1
2

∫ 1
0 Gij(φφφ)

∂φj

∂τ
dτ, if SL > 0;

FHLLi − 1
2
SL+SR

SR−SL

∫ 1
0 Gij(φφφ)

∂φj

∂τ
dτ, if SL < 0 < SR;

FRi + 1
2

∫ 1
0 Gij(φφφ)

∂φj

∂τ
dτ, if SR < 0.

I Here, FHLLi is the standard HLL numerical flux,

FHLLi =
FLi S

R − FRi SL + SLSR(URi − ULi )

SR − SL
,

Gij is the ij-th element of the matrix GGG, and SL,R are the fastest left- and
right-moving signal velocities in the solution of the Riemann problem,
determined by the eigenvalues of the Jacobian of the system:

SL = min

(
uL −

√
(∂hP )|L + c20β̃|L, u

R −
√

(∂hP )|R + c20β̃|R
)
,

SR = max

(
uL +

√
(∂hP )|L + c20β̃|L, u

R +

√
(∂hP )|R + c20β̃|R

)
.
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Steady-state modRSW solutions

Consider a system of equations for h, u, and r:

∂th+ ∂x(hu) = 0,

∂tu+ u∂xu+ ∂xΦ = 0,

∂tr + u∂xr + β̃∂xu+ αr = 0,

where:

Φ =

{
Φc + c20r, for h+ b > Hc,

g(h+ b) + c20r, otherwise.

Steady-state solutions are found by considering time-independent flow (∂t(·) = 0):

∂x(hu) = 0,

u∂xu+ ∂xΦ = 0,

u∂xr + β̃∂xu+ αr = 0,
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The first of these steady-state equations gives immediately a solution of u in terms of
h:

∂x(hu) = 0 =⇒ hu = K, for constant K =⇒ u =
K

h
,

which is then substituted into the remaining equations, yielding a system of 2 ODEs
to solve for h and r:

−
K2

h3
∂xh+ ∂xΦ = 0,

K

h
∂xr −

K

h2
β̃∂xh+ αr = 0.

We seek a system of the form MMMXXX′ = YYY , where XXX = (h, r)T , prime denotes

derivative with respect to x, and MMM ∈ R2×2, YYY ∈ R2 are given from the equations

set. If MMM is non-singular (and hence invertible), then we can solve XXX′ = MMM−1YYY

numerically for XXX using, e.g., a simple finite difference scheme.
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The system is expanded as follows:[
−
K2

h3
+ g|Hc

]
∂xh+

[
c20

]
∂xr = −

[
g|Hc∂xb

]
,[K

h

]
∂xr −

[K
h2
β̃
]
∂xh = −

[
αr
]
,

where g|Hc = g if h+ b ≤ Hc and zero otherwise and the terms in square brackets are
components of MMM and YYY :

MMM =

[
−K

2

h3 + g|Hc c20
− K
h2 β̃

K
h

]
, YYY =

[
−g|Hc∂xb
−αr

]
.

The β̃ term requires further manipulation; re-writing in terms of the Heaviside
function we have:

β̃ = βΘ(−∂xu)Θ(h+ b−Hr)

= βΘ(K/h2∂xh)Θ(h+ b−Hr),
= βΘ(∂xh)Θ(h+ b−Hr).

Thus, the system reads XXX′ = f(XXX) where f(XXX) = MMM−1YYY and is solved using, e.g., a

forward Euler finite difference scheme: XXXj+1 = XXXj +4xf(XXXj ,XXXj−1). The value at

j− 1 is required to compute the Heaviside of the height gradient; all other components

in f(XXX) = MMM−1YYY are evaluated using values at level j. To start marching through

space, note that XXX1 = XXX2, so that β̃ = 0. Then proceed as usual for j ≥ 1.
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