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prior = N (x|0, 2 ),
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Riccati eqn.

Assume linear (M) dynamics, Q = 0, H = I,
and a deterministic EnKF.

The ensemble covariance obeys:

the forecast step: B̄k = M2P̄k−1 ; (1)

the analysis step: P̄k = (I− K̄k)B̄k (2)

⇐⇒ P̄−1
k = B̄−1

k + R−1 . (3)

=⇒ the “Riccati recursion”:

P̄−1
k = (M2P̄k−1)−1 + R−1 (4)
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Deductions from Riccati: Attenuation

Stationary solution:
P̄−1
∞ = (M2P̄∞)−1 + R−1 (5)

⇐⇒ P̄∞ = K̄∞R , K̄∞ =

I−M−2 if M ≥ 1 ,

0 otherwise.
(6)

Initial conditions (ICs) don’t appear
=⇒ ICs are “forgotten”.
=⇒ Sampling error is attenuated.
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Deductions from Riccati: Filter divergence

Perturbation analysis:
Recall: P̄k = ( I− K̄k )︸ ︷︷ ︸

−−−→
k→∞

M−2

M2P̄k−1 . (7)

By contrast, δP̄k ≈ ( I− K̄k )2 [M2 +MM′′] δP̄k−1 , (8)

Yielding δP̄k −−−→
k→∞

0 in the linear case (M′′ = 0),
as we found previously.

By contrast, no such guarantee exists when M′′ 6= 0
=⇒ filter divergence.

Also, M′′ may grow worse with k
=⇒ vicious circle.
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Deductions from Riccati: Why (N − 1) ?

Riccati invariant to change P̃ = αP̄, hence:

1/P̃∞ = 1/(M2P̃∞) + 1/R (9)



Sampling error from nonlinearity – why?

Consider the m-th “true” and “sample” moments:
µm = E[xm] , (10)

µ̂m = N−1
N∑
n=1

xmn . (11)

Define: Errorm = µ̂m − µm .

Define: µf
m = E

[(
M(x)

)
m
]
.

Assume degree-d Taylor-exp. of M is accurate. Then

µf
m =

md∑
i=1

Cm,iµi . (12)

Due to coupling of moments,

Errorf
m =

md∑
i=1

Cm,iErrorai , (13)

which defeats moment-matching.
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Why do we prefer the Kalman gain “form”?

Not equivalent when (N−1) < M :

P̄ = [I− K̄H]B̄ (14)

P̄ =
(
B̄+ + HTR−1H

)−1 (15)

Which is better?

Note that eqn. (15) follows from

prior ∝ exp[−1
2(x− x̄)T B̄+(x− x̄)] , (16)

which is “flat” in the directions outside of col(B̄).
=⇒ eqn. (15) yields “opposite” of the correct update.

Note: further complications in case P̄ not defined in eqn. (15).
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Ensemble linearizations

Recall the EnKF gain:

K̄ = C̄xy︸︷︷︸
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N−1 XYT

(
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1
N−1 YYT

+ R
)−1

. (17)

Question: Is there a matrix H̄ such that

K̄ = C̄xH̄T (
H̄C̄xH̄T + R

)−1 ? (18)

Answer: yes (mostly): H̄ = YX+ . (19)

Follow up questions:

Why YX+ ? (what is it?)

Why is this rarely discussed?

Does it relate to the analytic derivative (H′) ?
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Why H̄ = YX+ ? (what is it?)

H̄ is:

Linear least-squares (LLS) estimate of H given Y and X.

BLUE ?

MVUE ?

EnKF also doing LLS of x given (xf ,y) and H̄.
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Why is H̄ estimate rarely explicit?

Insert H̄ = YX+ in K̄:

K̄ = C̄xH̄T(H̄C̄xH̄T + R
)−1 (20)

= XYT(YΠXTYT + (N−1)R
)−1

, (21)

where ΠXT = X+X.
Note:

Appearance of ΠXT can be understood from chain rule.

Vanishing of ΠXT if H is linear, or (N−1) ≤M .

Version without ΠXT generally preferable.
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Does H̄ relate to H′ ?
Theorem:

lim
N→∞

H̄ = E[H′(x)]

lim
N→∞

=

YX+ Cyx

=

C−1
x

lim
N→∞

=

YXT(XXT)−1 (by Stein/IBP)

lim
N→∞

=

C̄yxC̄−1
x

Cyx

=

C−1
x (a.s., by Slutsky, sub. to reg.)

I.e. H̄ is (indeed) the average derivative.

p(x) same as for ensemble (used for H̄).

p(x) must be Gaussian!
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