EnKF - FAQ

(Ensemble Kalman filter - Frequently asked questions)

Patrick N. Raanes, Geir Evensen, Andreas S. Stordal Marc Bocquet, Alberto Carrassi

@cerea

Leeds, May 16, 2019

Revising the stochastic iterative ensemble smoother

Patrick N. Raanes ${ }^{* 1,2}$, Geir Evensen ${ }^{1,2}$, and Andreas S. Stordal ${ }^{1}$
${ }^{1}$ NORCE, Pb .22 Nygårdstangen, 5838 Bergen, Norway
${ }^{2}$ NERSC, Thormøhlens gate 47, 5006 Bergen, Norway

February 4, 2019

Abstract

Ensemble randomized maximum likelihood (EnRML) is an iterative (stochastic) ensemble smoother, used for large and nonlinear inverse problems, such as history matching and data assimilation. Its current formulation is overly complicated and has issues with computational costs, noise, and covariance localization, even causing some practitioners to omit crucial prior information. This paper resolves these difficulties and streamlines the algorithm, without changing its output. These simplifications are achieved through the careful treatment of the linearizations and subspaces. For example, it is shown (a) how ensemble linearizations relate to average sensitivity, and (b) that the ensemble does not loose rank during updates. The paper also draws significantly on the theory of the (deterministic) iterative ensemble Kalman smoother (IEnKS). Comparative benchmarks are obtained with the Lorenz-96 model with these two smoothers and the ensemble smoother using multiple data assimilation (ES-MDA).

1 Introduction

Ensemble (Kalman) smoothers are approximate methods used for data assimilation (state estimation in geoscience), history matching (parameter estimation for reservoirs), and other inverse problems constrained by partial differential equations. Iterative versions of the ensemble smoother, derived from optimization perspectives, have proven useful in improving the estimation accuracy when the forward operator is nonlinear. Ensemble randomized maximum likelihood (EnRML), also known as the iterative ensemble smoother (IES), is one such method. This paper fixes several issues with EnRML, described in the following. Readers unfamiliar with EnRML may jump to the beginning of the derivation:
linearization $\overline{\mathbf{M}}_{i}$ only appears in the product $\overline{\mathbf{M}}_{i} \overline{\mathbf{C}}_{\boldsymbol{x}, i} \overline{\mathbf{M}}_{i}^{\top}$, which does not require \mathbf{X}_{i}^{+}. For the prior increment, on the other hand, the modification breaks its Kalman gain form. Meanwhile, the precision matrix form, i.e. their equation 10 , is already invalid because it requires the inverse of $\overline{\mathbf{C}}_{\boldsymbol{x}, i}$. Still, in their equation 15 , the prior increment is formulated with an inversion in ensemble space, and also unburdened of the explicit computation of $\overline{\mathbf{M}}_{i}$. Intermediate explanations are lacking, but could be construed to involve approximate inversions. Another issue is that the pseudo-inverse of $\overline{\mathbf{C}}_{x}$ is now required (via \mathbf{X}), and covariance localization is further complicated.

An approximate version was therefore also proposed, where the prior mismatch term is omitted from the update formula altogether. This is not principled, and severely

Revising the stochastic iterative ensemble smoother

Patrick N. Raanes ${ }^{* 1,2}$, Geir Evensen ${ }^{1,2}$, and Andreas S. Stordal ${ }^{1}$
${ }^{1}$ NORCE, Pb. 22 Nygårdstangen, 5838 Bergen, Norway
${ }^{2}$ NERSC, Thormøhlens gate 47, 5006 Bergen, Norway

February 4, 2019

Abstract

Ensemble randomized maximum likelihood (EnRML) is an iterative (stochastic) ensemble smoother, used for large and nonlinear inverse problems, such as history matching and data assimilation. Its current formulation is overly complicated and has issues with computational costs, noise, and covariance localization, even causing some practitioners to omit crucial prior information. This paper resolves these difficulties and streamlines the algorithm, without changing its output. These simplifications are achieved through the careful treatment of the linearizations and subspaces. For example, it is shown (a) how ensemble linearizations relate to average sensitivity, and (b) that the ensemble does not loose rank during updates. The paper also draws significantly on the theory of the (deterministic) iterative ensemble Kalman smoother (IEnKS). Comparative benchmarks are obtained with the Lorenz-96 model with these two smoothers and the ensemble smoother using multiple data assimilation (ES-MDA).

Also answered these questions about the EnKF:

Revising the stochastic iterative ensemble smoother
 Patrick N. Raanes ${ }^{* 1,2}$, Geir Evensen ${ }^{1,2}$, and Andreas S. Stordal ${ }^{1}$
 ${ }^{1}$ NORCE, Pb. 22 Nygårdstangen, 5838 Bergen, Norway
 ${ }^{2}$ NERSC, Thormøhlens gate 47, 5006 Bergen, Norway

February 4, 2019

Abstract

Ensemble randomized maximum likelihood (EnRML) is an iterative (stochastic) ensemble smoother, used for large and nonlinear inverse problems, such as history matching and data assimilation. Its current formulation is overly complicated and has issues with computational costs, noise, and covariance localization, even causing some practitioners to omit crucial prior information. This paper resolves these difficulties and streamlines the algorithm, without changing its output. These simplifications are achieved through the carcful treatment of the linearizations and subspaces. For example, it is shown (a) how ensemble linearizations relate to average sensitivity, and (b) that the ensemble does not loose rank during updates. The paper also draws significantly on the theory of the (deterministic) iterative ensemble Kalman smoother (IEnKS). Comparative benchmarks are obtained with the Lorenz-96 model with these two smoothers and the ensemble smoother using multiple data assimilation (ES-MDA).

Also answered these questions about the EnKF:

- About ensemble linearizations:
- What exactly are they?
- Why does this rarely get mentioned?
- How does it relate to analytic derivatives?

Revising the stochastic iterative ensemble smoother
 Patrick N. Raanes ${ }^{* 1,2}$, Geir Evensen ${ }^{1,2}$, and Andreas S. Stordal ${ }^{1}$
 ${ }^{1}$ NORCE, Pb. 22 Nygårdstangen, 5838 Bergen, Norway
 ${ }^{2}$ NERSC, Thormøhlens gate 47, 5006 Bergen, Norway

February 4, 2019

Abstract
Ensemble randomized maximum likelihood (EnRML) is an iterative (stochastic) ensemble smoother, used for large and nonlinear inverse problems, such as history matching and data assimilation. Its current formulation is overly complicated and has issues with computational costs, noise, and covariance localization, even causing some practitioners to omit crucial prior information. This paper resolves these difficulties and streamlines the algorithm, without changing its output. These simplifications are achieved through the carcful treatment of the linearizations and subspaces. For example, it is shown (a) how ensemble linearizations relate to average sensitivity, and (b) that the ensemble does not loose rank during updates. The paper also draws significantly on the theory of the (deterministic) iterative ensemble Kalman smoother (IEnKS). Comparative benchmarks are obtained with the Lorenz-90 model with these two smoothers and the ensemble smoother using multiple data assimithation (ES-MDA).

Also answered these questions about the EnKF:

- About ensemble linearizations:
- What exactly are they?
- Why does this rarely get mentioned?
- How does it relate to analytic derivatives?

■ Why do we prefer the Kalman gain "form"?

Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures

Patrick N. Raanes ${ }^{1} \odot \mid$ Marc Bocquet ${ }^{2} \odot \mid$ Alberto Carrassi ${ }^{1} \odot$

${ }^{1}$ Nansen Environmental and Remote Sensing Center, Bergen, Norway
${ }^{2}$ CEREA, Joint laboratory of École des Ponts ParisTech and EDF R\&D, Université Paris-Est, Champs-sur-Marne, France

Correspondence

Patrick N. Raanes, NERSC, Thormøhlensgate 47, Bergen N-5006, Norway.
Email: patrick.n.raanes@gmail.com

Funding information

EmblAUS project of the Nordic countries funding agency NordForsk, by DIGIRES sponsored by PETROMAKS2 of the Research Council of Norway and industry partners, and project REDDA of the Norwegian Research Council.,

This paper studies multiplicative inflation: the complementary scaling of the state covariance in the ensemble Kalman filter (EnKF). Firstly, error sources in the EnKF are catalogued and discussed in relation to inflation; nonlinearity is given particular attention as a source of sampling error. In response, the "finite-size" refinement known as the EnKF- N is re-derived via a Gaussian scale mixture, again demonstrating how it yields adaptive inflation. Existing methods for adaptive inflation estimation are reviewed, and several insights are gained from a comparative analysis. One such adaptive inflation method is selected to complement the EnKF- N to make a hybrid that is suitable for contexts where model error is present and imperfectly parametrized. Benchmarks are obtained from experiments with the two-scale Lorenz model and its slow-scale truncation. The proposed hybrid EnKF- N method of adaptive inflation is found to yield systematic accuracy improvements in comparison with the existing methods, albeit to a moderate degree.

KEYWORDS

adaptive filtering, Bayesian inference, covariance inflation, data assimilation, ensemble Kalman filter (EnKF), scale mixture

Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures

Patrick N. Raanes ${ }^{1} \odot \mid$ Marc Bocquet $^{2} \odot \mid$ Alberto Carrassi ${ }^{1} \odot$

${ }^{1}$ Nansen Environmental and Remote Sensing Center, Bergen, Norway
${ }^{2}$ CEREA, Joint laboratory of École des Ponts ParisTech and EDF R\&D, Université Paris-Est, Champs-sur-Marne, France

Correspondence
Patrick N. Raanes, NERSC, Thormphlensgate 47, Bergen N-5006, Norway.

This paper studies multiplicative inflation: the complementary scaling of the state covariance in the ensemble Kalman filter (EnKF). Firstly, error sources in the EnKF are catalogued and discussed in relation to inflation; nonlinearity is given particular attention as a source of sampling error. In response, the "finite-size" refinement known as the EnKF- N is re-derived via a Gaussian scale mixture, again demonstrating how it yields adaptive inflation. Existing methods for adaptive inflation estimation are reviewed, and several insights are gained from a comparative analy-

Also answered these questions about the EnKF:

Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures

Patrick N. Raanes ${ }^{1} \odot \mid$ Marc Bocquet $^{2} \odot \mid$ Alberto Carrassi ${ }^{1} \odot$
${ }^{1}$ Nansen Environmental and Remote Sensing Center, Bergen, Norway
${ }^{2}$ CEREA, Joint laboratory of École des Ponts ParisTech and EDF R\&D, Université Paris-Est, Champs-sur-Marne, France

Correspondence
Patrick N. Raanes, NERSC, Thormphlensgate 47, Bergen N-5006, Norway.

This paper studies multiplicative inflation: the complementary scaling of the state covariance in the ensemble Kalman filter (EnKF). Firstly, error sources in the EnKF are catalogued and discussed in relation to inflation; nonlinearity is given particular attention as a source of sampling error. In response, the "finite-size" refinement known as the EnKF- N is re-derived via a Gaussian scale mixture, again demonstrating how it yields adaptive inflation. Existing methods for adaptive inflation estimation are reviewed, and several insights are gained from a comparative analy-

Also answered these questions about the EnKF:
$■$ Why do we use $(N-1)$ in $\frac{1}{N-1} \sum_{n}\left(x_{n}-\bar{x}\right)^{2}$?

Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures

Patrick N. Raanes ${ }^{1} \odot \mid$ Marc Bocquet $^{2} \odot \mid$ Alberto Carrassi ${ }^{1} \odot$
${ }^{1}$ Nansen Environmental and Remote Sensing Center, Bergen, Norway
${ }^{2}$ CEREA, Joint laboratory of École des Ponts ParisTech and EDF R\&D, Université Paris-Est, Champs-sur-Marne, France

Correspondence
Patrick N. Raanes, NERSC, Thormphlensgate 47, Bergen N-5006, Norway.

This paper studies multiplicative inflation: the complementary scaling of the state covariance in the ensemble Kalman filter (EnKF). Firstly, error sources in the EnKF are catalogued and discussed in relation to inflation; nonlinearity is given particular attention as a source of sampling error. In response, the "finite-size" refinement known as the EnKF- N is re-derived via a Gaussian scale mixture, again demonstrating how it yields adaptive inflation. Existing methods for adaptive inflation estimation are reviewed, and several insights are gained from a comparative analy-

Also answered these questions about the EnKF:

- Why do we use $(N-1)$ in $\frac{1}{N-1} \sum_{n}\left(x_{n}-\bar{x}\right)^{2}$?
- About nonlinearity:

■ Why does it create sampling error?

- Why does it cause divergence?
\mathcal{N} despite nonlinearity

\mathcal{N} despite nonlinearity

$\mathcal{M}_{\text {Lin }}(x)=\sqrt{2} x$,

\mathcal{N} despite nonlinearity

$$
\mathcal{M}_{\mathrm{Lin}}(x)=\sqrt{2} x,
$$

\mathcal{N} despite nonlinearity

$$
\mathcal{M}_{\mathrm{Lin}}(x)=\sqrt{2} x,
$$

\mathcal{N} despite nonlinearity

$$
\begin{aligned}
\mathcal{M}_{\text {Lin }}(x) & =\sqrt{2} x, \\
\mathcal{M}_{\text {NonLin }}(x) & =\sqrt{2} F_{\mathcal{N}}^{-1}\left(F_{\chi}\left(x^{2}\right)\right)
\end{aligned}
$$

\mathcal{N} despite nonlinearity

$$
\begin{aligned}
\mathcal{M}_{\text {Lin }}(x) & =\sqrt{2} x, \\
\mathcal{M}_{\text {NonLin }}(x) & =\sqrt{2} F_{\mathcal{N}}^{-1}\left(F_{\chi}\left(x^{2}\right)\right)
\end{aligned}
$$

Two scalar filtering problems

Consider the
problem with:

Two scalar filtering problems

$$
\text { prior }=\mathcal{N}(x \mid 0, \underline{2})
$$

Consider the problem with:

Two scalar filtering problems

Consider the
problem with:

$$
\text { prior }=\mathcal{N}(x \mid 0, \underline{2}),
$$

likelihood $=\mathcal{N}(0 \mid x, 2)$,

Two scalar filtering problems

Consider the
problem with:

$$
\text { prior }=\mathcal{N}(x \mid 0, \underline{2}),
$$

likelihood $=\mathcal{N}(0 \mid x, 2)$,
\Longrightarrow posterior $=\mathcal{N}(x \mid \underline{0,1})$.

Two scalar filtering problems

Consider the problem with:

$$
\text { prior }=\mathcal{N}(x \mid 0, \underline{2}),
$$

$$
\text { likelihood }=\mathcal{N}(0 \mid x, 2),
$$

$$
\Longrightarrow \text { posterior }=\mathcal{N}(x \mid \underline{0}, \underline{1}) .
$$

$$
\text { dynamical model: } \quad \mathcal{M}_{\text {Lin }}(x)=\sqrt{2} x
$$

Two scalar filtering problems

Consider the
problem with:

$$
\begin{aligned}
\text { prior } & =\mathcal{N}(x \mid 0, \underline{2}) \\
\text { likelihood } & =\mathcal{N}(0 \mid x, 2) \\
\Longrightarrow \text { posterior } & =\mathcal{N}(x \mid \underline{0}, \underline{1})
\end{aligned}
$$

$$
\text { dynamical model: } \quad \mathcal{M}_{\text {Lin }}(x)=\sqrt{2} x
$$

Now apply a
(square-root)
EnKF to it.

Two scalar filtering problems

Consider the problem with:

$$
\text { prior }=\mathcal{N}(x \mid 0, \underline{2}),
$$

$$
\text { likelihood }=\mathcal{N}(0 \mid x, 2),
$$

$$
\Longrightarrow \text { posterior }=\mathcal{N}(x \mid \underline{0}, \underline{1}) .
$$

$$
\text { dynamical model: } \quad \mathcal{M}_{\text {Lin }}(x)=\sqrt{2} x
$$

Now apply a (square-root) EnKF to it.

Two scalar filtering problems

Consider the problem with:

$$
\text { prior }=\mathcal{N}(x \mid 0, \underline{2}),
$$

$$
\text { likelihood }=\mathcal{N}(0 \mid x, 2),
$$

$$
\Longrightarrow \text { posterior }=\mathcal{N}(x \mid \underline{0}, \underline{1}) .
$$

$$
\text { dynamical model: } \quad \mathcal{M}_{\mathrm{Lin}}(x)=\sqrt{2} x .
$$

Now apply a (square-root) EnKF to it.

Two scalar filtering problems

Consider the problem with:

$$
\text { prior }=\mathcal{N}(x \mid 0, \underline{2}),
$$

$$
\text { likelihood }=\mathcal{N}(0 \mid x, 2),
$$

$$
\Longrightarrow \text { posterior }=\mathcal{N}(x \mid \underline{0}, \underline{1}) .
$$

dynamical model: $\mathcal{M}_{\text {NonLin }}(x)=\ldots$.

Now apply a (square-root) EnKF to it.

Two scalar filtering problems

Consider the problem with:

$$
\text { prior }=\mathcal{N}(x \mid 0, \underline{2}),
$$

likelihood $=\mathcal{N}(0 \mid x, 2)$,
\Longrightarrow posterior $=\mathcal{N}(x \mid \underline{0}, \underline{1})$.
dynamical model: $\mathcal{M}_{\text {NonLin }}(x)=\ldots$.

Now apply a
(square-root)
EnKF to it.

Riccati eqn.

Assume linear (\mathbf{M}) dynamics, $\mathbf{Q}=0, \mathbf{H}=\mathbf{I}$, and a deterministic EnKF.

Riccati eqn.

Assume linear (M) dynamics, $\mathbf{Q}=0, \mathbf{H}=\mathbf{I}$, and a deterministic EnKF.

The ensemble covariance obeys:

Riccati eqn.

Assume linear (M) dynamics, $\mathbf{Q}=0, \mathbf{H}=\mathbf{I}$, and a deterministic EnKF.

The ensemble covariance obeys:

- the forecast step: $\quad \overline{\mathbf{B}}_{k}=\mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} ;$
- the analysis step:

$$
\begin{align*}
\overline{\mathbf{P}}_{k} & =\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right) \overline{\mathbf{B}}_{k} \tag{2}\\
\overline{\mathbf{P}}_{k}^{-1} & =\overline{\mathbf{B}}_{k}^{-1}+\mathbf{R}^{-1}
\end{align*}
$$

Riccati eqn.

Assume linear (M) dynamics, $\mathbf{Q}=0, \mathbf{H}=\mathbf{I}$, and a deterministic EnKF.

The ensemble covariance obeys:

- the forecast step: $\quad \overline{\mathbf{B}}_{k}=\mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} ;$
- the analysis step:

$$
\begin{align*}
\overline{\mathbf{P}}_{k} & =\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right) \overline{\mathbf{B}}_{k} \tag{2}\\
\Longleftrightarrow \quad \overline{\mathbf{P}}_{k}^{-1} & =\overline{\mathbf{B}}_{k}^{-1}+\mathbf{R}^{-1}
\end{align*}
$$

\Longrightarrow the "Riccati recursion":

$$
\begin{equation*}
\overline{\mathbf{P}}_{k}^{-1}=\left(\mathbf{M}^{2} \overline{\mathbf{P}}_{k-1}\right)^{-1}+\mathbf{R}^{-1} \tag{4}
\end{equation*}
$$

Deductions from Riccati: Attenuation

Deductions from Riccati: Attenuation

Stationary solution:

$$
\begin{equation*}
\overline{\mathbf{P}}_{\infty}^{-1}=\left(\mathbf{M}^{2} \overline{\mathbf{P}}_{\infty}\right)^{-1}+\mathbf{R}^{-1} \tag{5}
\end{equation*}
$$

Deductions from Riccati: Attenuation

Stationary solution:

$$
\begin{equation*}
\overline{\mathbf{P}}_{\infty}^{-1}=\left(\mathbf{M}^{2} \overline{\mathbf{P}}_{\infty}\right)^{-1}+\mathbf{R}^{-1} \tag{5}
\end{equation*}
$$

$$
\Longleftrightarrow \quad \overline{\mathbf{P}}_{\infty}=\overline{\mathbf{K}}_{\infty} \mathbf{R}, \quad \overline{\mathbf{K}}_{\infty}=
$$

Deductions from Riccati: Attenuation

Stationary solution:

$$
\begin{align*}
\overline{\mathbf{P}}_{\infty}^{-1} & =\left(\mathbf{M}^{2} \overline{\mathbf{P}}_{\infty}\right)^{-1}+\mathbf{R}^{-1} \tag{5}\\
\overline{\mathbf{P}}_{\infty} & =\overline{\mathbf{K}}_{\infty} \mathbf{R}, \quad \overline{\mathbf{K}}_{\infty}= \begin{cases}\mathbf{I}-\mathbf{M}^{-2} & \text { if } \mathbf{M} \geq 1 \\
0 & \text { otherwise }\end{cases} \tag{6}
\end{align*}
$$

Deductions from Riccati: Attenuation

Stationary solution:

$$
\begin{align*}
\overline{\mathbf{P}}_{\infty}^{-1} & =\left(\mathbf{M}^{2} \overline{\mathbf{P}}_{\infty}\right)^{-1}+\mathbf{R}^{-1} \tag{5}\\
\Longleftrightarrow \quad \overline{\mathbf{P}}_{\infty} & =\overline{\mathbf{K}}_{\infty} \mathbf{R}, \quad \overline{\mathbf{K}}_{\infty}= \begin{cases}\mathbf{I}-\mathbf{M}^{-2} & \text { if } \mathbf{M} \geq 1, \\
0 & \text { otherwise }\end{cases} \tag{6}
\end{align*}
$$

Initial conditions (ICs) don't appear

Deductions from Riccati: Attenuation

Stationary solution:

$$
\begin{align*}
\overline{\mathbf{P}}_{\infty}^{-1} & =\left(\mathbf{M}^{2} \overline{\mathbf{P}}_{\infty}\right)^{-1}+\mathbf{R}^{-1} \tag{5}\\
\Longleftrightarrow \quad \overline{\mathbf{P}}_{\infty} & =\overline{\mathbf{K}}_{\infty} \mathbf{R}, \quad \overline{\mathbf{K}}_{\infty}= \begin{cases}\mathbf{I}-\mathbf{M}^{-2} & \text { if } \mathbf{M} \geq 1 \\
0 & \text { otherwise }\end{cases} \tag{6}
\end{align*}
$$

Initial conditions (ICs) don't appear
\Longrightarrow ICs are "forgotten".

Deductions from Riccati: Attenuation

Stationary solution:

$$
\begin{align*}
\overline{\mathbf{P}}_{\infty}^{-1} & =\left(\mathbf{M}^{2} \overline{\mathbf{P}}_{\infty}\right)^{-1}+\mathbf{R}^{-1} \tag{5}\\
\overline{\mathbf{P}}_{\infty} & =\overline{\mathbf{K}}_{\infty} \mathbf{R}, \quad \overline{\mathbf{K}}_{\infty}= \begin{cases}\mathbf{I}-\mathbf{M}^{-2} & \text { if } \mathbf{M} \geq 1 \\
0 & \text { otherwise }\end{cases} \tag{6}
\end{align*}
$$

Initial conditions (ICs) don't appear
\Longrightarrow ICs are "forgotten".
\Longrightarrow Sampling error is attenuated.

Deductions from Riccati: Filter divergence

Deductions from Riccati: Filter divergence

Perturbation analysis:

Deductions from Riccati: Filter divergence

Perturbation analysis:

$$
\begin{equation*}
\text { Recall: } \quad \overline{\mathbf{P}}_{k}=\underbrace{\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)} \mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} . \tag{7}
\end{equation*}
$$

Deductions from Riccati: Filter divergence

Perturbation analysis:

$$
\begin{equation*}
\text { Recall: } \quad \overline{\mathbf{P}}_{k}=\underbrace{\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)}_{k \rightarrow \infty} \mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} . \tag{7}
\end{equation*}
$$

Deductions from Riccati: Filter divergence

Perturbation analysis:

$$
\begin{equation*}
\text { Recall: } \quad \overline{\mathbf{P}}_{k}=\underbrace{\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)}_{k \rightarrow \infty} \mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { By contrast, } \quad \delta \overline{\mathbf{P}}_{k} \approx\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)^{2}\left[\mathbf{M}^{2}+\mathcal{M} \mathcal{M}^{\prime \prime}\right] \delta \overline{\mathbf{P}}_{k-1}, \tag{8}
\end{equation*}
$$

Deductions from Riccati: Filter divergence

Perturbation analysis:

$$
\begin{equation*}
\text { Recall: } \quad \overline{\mathbf{P}}_{k}=\underbrace{\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)}_{k \rightarrow \infty} \mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { By contrast, } \quad \delta \overline{\mathbf{P}}_{k} \approx\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)^{2}\left[\mathbf{M}^{2}+\mathcal{M} \mathcal{M}^{\prime \prime}\right] \delta \overline{\mathbf{P}}_{k-1}, \tag{8}
\end{equation*}
$$

Yielding $\delta \overline{\mathbf{P}}_{k} \xrightarrow[k \rightarrow \infty]{ } 0$ in the linear case $\left(\mathcal{M}^{\prime \prime}=0\right)$,

Deductions from Riccati: Filter divergence

Perturbation analysis:

$$
\begin{equation*}
\text { Recall: } \quad \overline{\mathbf{P}}_{k}=\underbrace{\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)}_{k \rightarrow \infty} \mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { By contrast, } \quad \delta \overline{\mathbf{P}}_{k} \approx\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)^{2}\left[\mathbf{M}^{2}+\mathcal{M} \mathcal{M}^{\prime \prime}\right] \delta \overline{\mathbf{P}}_{k-1}, \tag{8}
\end{equation*}
$$

Yielding $\delta \overline{\mathbf{P}}_{k} \xrightarrow[k \rightarrow \infty]{ } 0$ in the linear case $\left(\mathcal{M}^{\prime \prime}=0\right)$, as we found previously.

Deductions from Riccati: Filter divergence

Perturbation analysis:

$$
\begin{equation*}
\text { Recall: } \quad \overline{\mathbf{P}}_{k}=\underbrace{\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)}_{k \rightarrow \infty} \mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { By contrast, } \quad \delta \overline{\mathbf{P}}_{k} \approx\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)^{2}\left[\mathbf{M}^{2}+\mathcal{M} \mathcal{M}^{\prime \prime}\right] \delta \overline{\mathbf{P}}_{k-1}, \tag{8}
\end{equation*}
$$

Yielding $\delta \overline{\mathbf{P}}_{k} \xrightarrow[k \rightarrow \infty]{ } 0$ in the linear case $\left(\mathcal{M}^{\prime \prime}=0\right)$, as we found previously.

By contrast, no such guarantee exists when $\mathcal{M}^{\prime \prime} \neq 0$

Deductions from Riccati: Filter divergence

Perturbation analysis:

$$
\begin{equation*}
\text { Recall: } \quad \overline{\mathbf{P}}_{k}=\underbrace{\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)}_{k \rightarrow \infty} \mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { By contrast, } \quad \delta \overline{\mathbf{P}}_{k} \approx\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)^{2}\left[\mathbf{M}^{2}+\mathcal{M} \mathcal{M}^{\prime \prime}\right] \delta \overline{\mathbf{P}}_{k-1}, \tag{8}
\end{equation*}
$$

Yielding $\delta \overline{\mathbf{P}}_{k} \xrightarrow[k \rightarrow \infty]{ } 0$ in the linear case $\left(\mathcal{M}^{\prime \prime}=0\right)$, as we found previously.

By contrast, no such guarantee exists when $\mathcal{M}^{\prime \prime} \neq 0$
\Longrightarrow filter divergence.

Deductions from Riccati: Filter divergence

Perturbation analysis:

$$
\begin{equation*}
\text { Recall: } \quad \overline{\mathbf{P}}_{k}=\underbrace{\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)}_{k \rightarrow \infty} \mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { By contrast, } \quad \delta \overline{\mathbf{P}}_{k} \approx\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)^{2}\left[\mathbf{M}^{2}+\mathcal{M} \mathcal{M}^{\prime \prime}\right] \delta \overline{\mathbf{P}}_{k-1}, \tag{8}
\end{equation*}
$$

Yielding $\delta \overline{\mathbf{P}}_{k} \xrightarrow[k \rightarrow \infty]{ } 0$ in the linear case $\left(\mathcal{M}^{\prime \prime}=0\right)$, as we found previously.

By contrast, no such guarantee exists when $\mathcal{M}^{\prime \prime} \neq 0$
\Longrightarrow filter divergence.

Also, $\mathcal{M}^{\prime \prime}$ may grow worse with k

Deductions from Riccati: Filter divergence

Perturbation analysis:

$$
\begin{equation*}
\text { Recall: } \quad \overline{\mathbf{P}}_{k}=\underbrace{\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)}_{k \rightarrow \infty} \mathbf{M}^{2} \overline{\mathbf{P}}_{k-1} . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { By contrast, } \quad \delta \overline{\mathbf{P}}_{k} \approx\left(\mathbf{I}-\overline{\mathbf{K}}_{k}\right)^{2}\left[\mathbf{M}^{2}+\mathcal{M} \mathcal{M}^{\prime \prime}\right] \delta \overline{\mathbf{P}}_{k-1}, \tag{8}
\end{equation*}
$$

Yielding $\delta \overline{\mathbf{P}}_{k} \xrightarrow[k \rightarrow \infty]{ } 0$ in the linear case $\left(\mathcal{M}^{\prime \prime}=0\right)$, as we found previously.

By contrast, no such guarantee exists when $\mathcal{M}^{\prime \prime} \neq 0$
\Longrightarrow filter divergence.

Also, $\mathcal{M}^{\prime \prime}$ may grow worse with k
\Longrightarrow vicious circle.

Deductions from Riccati: Why $(N-1)$?

Riccati invariant to change $\tilde{\mathbf{P}}=\alpha \overline{\mathbf{P}}$, hence:

$$
\begin{equation*}
1 / \tilde{\mathbf{P}}_{\infty}=1 /\left(\mathbf{M}^{2} \tilde{\mathbf{P}}_{\infty}\right)+1 / \mathbf{R} \tag{9}
\end{equation*}
$$

Sampling error from nonlinearity - why?

- Due to coupling of moments,

$$
\begin{equation*}
\text { Error }_{m}^{\mathrm{f}}=\sum_{i=1}^{m d} C_{m, i} \operatorname{Error}_{i}^{a} \tag{13}
\end{equation*}
$$

which defeats moment-matching.

Sampling error from nonlinearity - why?

■ Consider the m-th "true" and "sample" moments:

$$
\begin{align*}
\mu_{m} & =\mathbb{E}\left[x^{m}\right] \tag{10}\\
\hat{\mu}_{m} & =N^{-1} \sum_{n=1}^{N} x_{n}^{m} \tag{11}
\end{align*}
$$

- Due to coupling of moments,

$$
\begin{equation*}
\text { Error }_{m}^{\mathrm{f}}=\sum_{i=1}^{m d} C_{m, i} \text { Error }_{i}^{a} \tag{13}
\end{equation*}
$$

which defeats moment-matching.

Sampling error from nonlinearity - why?

■ Consider the m-th "true" and "sample" moments:

$$
\begin{align*}
\mu_{m} & =\mathbb{E}\left[x^{m}\right] \tag{10}\\
\hat{\mu}_{m} & =N^{-1} \sum_{n=1}^{N} x_{n}^{m} \tag{11}
\end{align*}
$$

■ Define: Error $_{m}=\hat{\mu}_{m}-\mu_{m}$.

- Due to coupling of moments,

$$
\begin{equation*}
\text { Error }_{m}^{f}=\sum_{i=1}^{m d} C_{m, i} \text { Error }_{i} \tag{13}
\end{equation*}
$$

which defeats moment-matching.

Sampling error from nonlinearity - why?

■ Consider the m-th "true" and "sample" moments:

$$
\begin{align*}
\mu_{m} & =\mathbb{E}\left[x^{m}\right] \tag{10}\\
\hat{\mu}_{m} & =N^{-1} \sum_{n=1}^{N} x_{n}^{m} \tag{11}
\end{align*}
$$

- Define: Error $_{m}=\hat{\mu}_{m}-\mu_{m}$.

■ Define: $\mu_{m}^{\mathrm{f}}=\mathbb{E}\left[(\mathcal{M}(x))^{m}\right]$.

- Due to coupling of moments,

$$
\begin{equation*}
\text { Error }_{m}^{\mathrm{f}}=\sum_{i=1}^{m d} C_{m, i} \text { Error }_{i} \tag{13}
\end{equation*}
$$

which defeats moment-matching.

Sampling error from nonlinearity - why?

■ Consider the m-th "true" and "sample" moments:

$$
\begin{align*}
\mu_{m} & =\mathbb{E}\left[x^{m}\right] \tag{10}\\
\hat{\mu}_{m} & =N^{-1} \sum_{n=1}^{N} x_{n}^{m} \tag{11}
\end{align*}
$$

- Define: Error $_{m}=\hat{\mu}_{m}-\mu_{m}$.

■ Define: $\mu_{m}^{\mathrm{f}}=\mathbb{E}\left[(\mathcal{M}(x))^{m}\right]$.
■ Assume degree- d Taylor-exp. of \mathcal{M} is accurate. Then

$$
\begin{equation*}
\mu_{m}^{f}=\sum_{i=1}^{m d} C_{m, i} \mu_{i} \tag{12}
\end{equation*}
$$

■ Due to coupling of moments,

$$
\begin{equation*}
\text { Error }_{m}^{\mathrm{f}}=\sum_{i=1}^{m d} C_{m, i} \text { Error }_{i} \tag{13}
\end{equation*}
$$

which defeats moment-matching.

Sampling error from nonlinearity - why?

■ Consider the m-th "true" and "sample" moments:

$$
\begin{align*}
\mu_{m} & =\mathbb{E}\left[x^{m}\right] \tag{10}\\
\hat{\mu}_{m} & =N^{-1} \sum_{n=1}^{N} x_{n}^{m} \tag{11}
\end{align*}
$$

- Define: Error $_{m}=\hat{\mu}_{m}-\mu_{m}$.

■ Define: $\mu_{m}^{\mathrm{f}}=\mathbb{E}\left[(\mathcal{M}(x))^{m}\right]$.
■ Assume degree- d Taylor-exp. of \mathcal{M} is accurate. Then

$$
\begin{equation*}
\mu_{m}^{f}=\sum_{i=1}^{m d} C_{m, i} \mu_{i} \tag{12}
\end{equation*}
$$

- Hence,

$$
\begin{equation*}
\text { Error }_{m}^{\mathrm{f}}=\sum_{i=1}^{m d} C_{m, i} \text { Error }_{i} \tag{13}
\end{equation*}
$$

which defeats moment-matching.

Why do we prefer the Kalman gain "form"?

Not equivalent when $(N-1)<M$:

$$
\begin{align*}
& \overline{\mathbf{P}}=[\mathbf{I}-\overline{\mathbf{K}} \mathbf{H}] \overline{\mathbf{B}} \tag{14}\\
& \overline{\mathbf{P}}=\left(\overline{\mathbf{B}}^{+}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \tag{15}
\end{align*}
$$

Why do we prefer the Kalman gain "form"?

Not equivalent when $(N-1)<M$:

$$
\begin{align*}
& \overline{\mathbf{P}}=[\mathbf{I}-\overline{\mathbf{K}} \mathbf{H}] \overline{\mathbf{B}} \tag{14}\\
& \overline{\mathbf{P}}=\left(\overline{\mathbf{B}}^{+}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \tag{15}
\end{align*}
$$

Which is better?

Why do we prefer the Kalman gain "form"?

Not equivalent when $(N-1)<M$:

$$
\begin{align*}
& \overline{\mathbf{P}}=[\mathbf{I}-\overline{\mathbf{K}} \mathbf{H}] \overline{\mathbf{B}} \tag{14}\\
& \overline{\mathbf{P}}=\left(\overline{\mathbf{B}}^{+}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \tag{15}
\end{align*}
$$

Which is better?

Note that eqn. (15) follows from

$$
\begin{equation*}
\text { prior } \propto \exp \left[-\frac{1}{2}(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\top} \overline{\mathbf{B}}^{+}(\boldsymbol{x}-\overline{\boldsymbol{x}})\right], \tag{16}
\end{equation*}
$$

Why do we prefer the Kalman gain "form"?

Not equivalent when $(N-1)<M$:

$$
\begin{align*}
& \overline{\mathbf{P}}=[\mathbf{I}-\overline{\mathbf{K}} \mathbf{H}] \overline{\mathbf{B}} \tag{14}\\
& \overline{\mathbf{P}}=\left(\overline{\mathbf{B}}^{+}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \tag{15}
\end{align*}
$$

Which is better?

Note that eqn. (15) follows from

$$
\begin{equation*}
\text { prior } \propto \exp \left[-\frac{1}{2}(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\top} \overline{\mathbf{B}}^{+}(\boldsymbol{x}-\overline{\boldsymbol{x}})\right], \tag{16}
\end{equation*}
$$

which is "flat" in the directions outside of $\operatorname{col}(\overline{\mathbf{B}})$.

Why do we prefer the Kalman gain "form"?

Not equivalent when $(N-1)<M$:

$$
\begin{align*}
& \overline{\mathbf{P}}=[\mathbf{I}-\overline{\mathbf{K}} \mathbf{H}] \overline{\mathbf{B}} \tag{14}\\
& \overline{\mathbf{P}}=\left(\overline{\mathbf{B}}^{+}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \tag{15}
\end{align*}
$$

Which is better?

Note that eqn. (15) follows from

$$
\begin{equation*}
\text { prior } \propto \exp \left[-\frac{1}{2}(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\top} \overline{\mathbf{B}}^{+}(\boldsymbol{x}-\overline{\boldsymbol{x}})\right], \tag{16}
\end{equation*}
$$

which is "flat" in the directions outside of $\operatorname{col}(\overline{\mathbf{B}})$.
\Longrightarrow eqn. (15) yields "opposite" of the correct update.

Why do we prefer the Kalman gain "form"?

Not equivalent when $(N-1)<M$:

$$
\begin{align*}
& \overline{\mathbf{P}}=[\mathbf{I}-\overline{\mathbf{K}} \mathbf{H}] \overline{\mathbf{B}} \tag{14}\\
& \overline{\mathbf{P}}=\left(\overline{\mathbf{B}}^{+}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \tag{15}
\end{align*}
$$

Which is better?

Note that eqn. (15) follows from

$$
\begin{equation*}
\text { prior } \propto \exp \left[-\frac{1}{2}(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\top} \overline{\mathbf{B}}^{+}(\boldsymbol{x}-\overline{\boldsymbol{x}})\right], \tag{16}
\end{equation*}
$$

which is "flat" in the directions outside of $\operatorname{col}(\overline{\mathbf{B}})$.
\Longrightarrow eqn. (15) yields "opposite" of the correct update.
Note: further complications in case $\overline{\mathbf{P}}$ not defined in eqn. (15).

Ensemble linearizations

Recall the EnKF gain:

$$
\begin{equation*}
\overline{\mathbf{K}}=\underbrace{\overline{\mathbf{C}}_{x y}}_{\frac{1}{N-1} \mathbf{X} \mathbf{Y}^{\top}}(\underbrace{\overline{\mathbf{C}}_{y}}_{\frac{1}{N-1} \mathbf{Y}^{\top}}+\mathbf{R})^{-1} . \tag{17}
\end{equation*}
$$

Ensemble linearizations

Recall the EnKF gain:

$$
\begin{equation*}
\overline{\mathbf{K}}=\underbrace{\overline{\mathbf{C}}_{x y}}_{\frac{1}{N-1} \mathbf{X} \mathbf{Y}^{\top}}(\underbrace{\overline{\mathbf{C}}_{y}}_{\frac{1}{N-1} \mathbf{Y}^{\top}}+\mathbf{R})^{-1} . \tag{17}
\end{equation*}
$$

Question: Is there a matrix $\overline{\mathbf{H}}$ such that

$$
\begin{equation*}
\overline{\mathbf{K}}=\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}} \overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}+\quad \mathbf{R}\right)^{-1} ? \tag{18}
\end{equation*}
$$

Answer:

Ensemble linearizations

Recall the EnKF gain:

$$
\begin{equation*}
\overline{\mathbf{K}}=\underbrace{\overline{\mathbf{C}}_{x y}}_{\frac{1}{N-1} \mathbf{X} \mathbf{Y}^{\top}}(\underbrace{\overline{\mathbf{C}}_{y}}_{\frac{1}{N-1} \mathbf{Y Y}^{\top}}+\mathbf{R})^{-1} . \tag{17}
\end{equation*}
$$

Question: Is there a matrix $\overline{\mathbf{H}}$ such that

$$
\begin{equation*}
\overline{\mathbf{K}}=\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}} \overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}+\quad \mathbf{R}\right)^{-1} ? \tag{18}
\end{equation*}
$$

Answer: yes (mostly): $\quad \overline{\mathbf{H}}=\mathbf{Y X}^{+}$.

Ensemble linearizations

Recall the EnKF gain:

$$
\begin{equation*}
\overline{\mathbf{K}}=\underbrace{\overline{\mathbf{C}}_{x y}}_{\frac{1}{N-1} \mathbf{X} \mathbf{Y}^{\top}}(\underbrace{\overline{\mathbf{C}}_{y}}_{\frac{1}{N-1} \mathbf{Y Y}^{\top}}+\mathbf{R})^{-1} . \tag{17}
\end{equation*}
$$

Question: Is there a matrix $\overline{\mathbf{H}}$ such that

$$
\begin{equation*}
\overline{\mathbf{K}}=\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}} \overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}+\quad \mathbf{R}\right)^{-1} ? \tag{18}
\end{equation*}
$$

Answer: yes (mostly): $\quad \overline{\mathbf{H}}=\mathbf{Y} \mathbf{X}^{+}$.
Follow up questions:

Ensemble linearizations

Recall the EnKF gain:

$$
\begin{equation*}
\overline{\mathbf{K}}=\underbrace{\overline{\mathbf{C}}_{x y}}_{\frac{1}{N-1} \mathbf{X} \mathbf{Y}^{\top}}(\underbrace{\overline{\mathbf{C}}_{y}}_{\frac{1}{N-1} \mathbf{Y Y}^{\top}}+\mathbf{R})^{-1} . \tag{17}
\end{equation*}
$$

Question: Is there a matrix $\overline{\mathbf{H}}$ such that

$$
\begin{equation*}
\overline{\mathbf{K}}=\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}} \overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}+\quad \mathbf{R}\right)^{-1} ? \tag{18}
\end{equation*}
$$

Answer: yes (mostly): $\quad \overline{\mathbf{H}}=\mathbf{Y} \mathbf{X}^{+}$.
Follow up questions:

- Why $\mathbf{Y X}^{+}$? (what is it?)

Ensemble linearizations

Recall the EnKF gain:

$$
\begin{equation*}
\overline{\mathbf{K}}=\underbrace{\overline{\mathbf{C}}_{x y}}_{\frac{1}{N-1} \mathbf{X} \mathbf{Y}^{\top}}(\underbrace{\overline{\mathbf{C}}_{y}}_{\frac{1}{N-1} \mathbf{Y Y}^{\top}}+\mathbf{R})^{-1} . \tag{17}
\end{equation*}
$$

Question: Is there a matrix $\overline{\mathbf{H}}$ such that

$$
\begin{equation*}
\overline{\mathbf{K}}=\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}} \overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}+\quad \mathbf{R}\right)^{-1} ? \tag{18}
\end{equation*}
$$

Answer: yes (mostly): $\quad \overline{\mathbf{H}}=\mathbf{Y} \mathbf{X}^{+}$.
Follow up questions:

- Why $\mathbf{Y X}^{+}$? (what is it?)

■ Why is this rarely discussed?

Ensemble linearizations

Recall the EnKF gain:

$$
\begin{equation*}
\overline{\mathbf{K}}=\underbrace{\overline{\mathbf{C}}_{x y}}_{\frac{1}{N-1} \mathbf{X} \mathbf{Y}^{\top}}(\underbrace{\overline{\mathbf{C}}_{y}}_{\frac{1}{N-1} \mathbf{Y Y}^{\top}}+\mathbf{R})^{-1} \tag{17}
\end{equation*}
$$

Question: Is there a matrix $\overline{\mathbf{H}}$ such that

$$
\begin{equation*}
\overline{\mathbf{K}}=\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}} \overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}+\mathbf{R}\right)^{-1} ? \tag{18}
\end{equation*}
$$

Answer: yes (mostly): $\quad \overline{\mathbf{H}}=\mathbf{Y} \mathbf{X}^{+}$.
Follow up questions:
■ Why $\mathbf{Y X}^{+}$? (what is it?)

- Why is this rarely discussed?

■ Does it relate to the analytic derivative $\left(\mathcal{H}^{\prime}\right)$?

Why $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$? (what is it?)
$\overline{\mathbf{H}}$ is:

Why $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$? (what is it?)

$\overline{\mathbf{H}}$ is:

- Linear least-squares (LLS) estimate of \mathcal{H} given \mathbf{Y} and \mathbf{X}.

Why $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$? (what is it?)

$\overline{\mathbf{H}}$ is:
■ Linear least-squares (LLS) estimate of \mathcal{H} given \mathbf{Y} and \mathbf{X}.
■ BLUE ?

Why $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$? (what is it?)

$\overline{\mathbf{H}}$ is:
■ Linear least-squares (LLS) estimate of \mathcal{H} given \mathbf{Y} and \mathbf{X}.

- BLUE ?

■ MVUE ?

Why $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$? (what is it?)

$\overline{\mathbf{H}}$ is:
■ Linear least-squares (LLS) estimate of \mathcal{H} given \mathbf{Y} and \mathbf{X}.
■ BLUE ?

- MVUE ?

EnKF also doing LLS of \boldsymbol{x} given $\left(\boldsymbol{x}^{f}, \boldsymbol{y}\right)$ and $\overline{\mathbf{H}}$.

Why is $\overline{\mathbf{H}}$ estimate rarely explicit?

Insert $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$in $\overline{\mathbf{K}}$:

$$
\begin{equation*}
\overline{\mathbf{K}}=\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}} \overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}+\mathbf{R}\right)^{-1} \tag{20}
\end{equation*}
$$

Why is $\overline{\mathbf{H}}$ estimate rarely explicit?

Insert $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$in $\overline{\mathbf{K}}$:

$$
\begin{align*}
\overline{\mathbf{K}} & =\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}}_{x} \overline{\mathbf{H}}^{\top}+\mathbf{R}\right)^{-1} \tag{20}\\
& =\mathbf{X} \mathbf{Y}^{\top}\left(\mathbf{Y} \Pi_{\mathbf{X}^{\top}} \mathbf{Y}^{\top}+(N-1) \mathbf{R}\right)^{-1}, \tag{21}
\end{align*}
$$

where $\boldsymbol{\Pi}_{\mathbf{X}^{\top}}=\mathbf{X}^{+} \mathbf{X}$.

Why is $\overline{\mathbf{H}}$ estimate rarely explicit?

Insert $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$in $\overline{\mathbf{K}}$:

$$
\begin{align*}
\overline{\mathbf{K}} & =\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}}_{x} \overline{\mathbf{H}}^{\top}+\mathbf{R}\right)^{-1} \tag{20}\\
& =\mathbf{X} \mathbf{Y}^{\top}\left(\mathbf{Y} \Pi_{\mathbf{X}^{\top}} \mathbf{Y}^{\top}+(N-1) \mathbf{R}\right)^{-1}, \tag{21}
\end{align*}
$$

where $\boldsymbol{\Pi}_{\mathbf{X}^{\top}}=\mathbf{X}^{+} \mathbf{X}$.
Note:

Why is $\overline{\mathbf{H}}$ estimate rarely explicit?

Insert $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$in $\overline{\mathbf{K}}$:

$$
\begin{align*}
\overline{\mathbf{K}} & =\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}} \overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}+\mathbf{R}\right)^{-1} \tag{20}\\
& =\mathbf{X} \mathbf{Y}^{\top}\left(\mathbf{Y} \Pi_{\mathbf{X}^{\top}} \mathbf{Y}^{\top}+(N-1) \mathbf{R}\right)^{-1}, \tag{21}
\end{align*}
$$

where $\boldsymbol{\Pi}_{\mathbf{X}^{\top}}=\mathbf{X}^{+} \mathbf{X}$.
Note:
■ Appearance of $\boldsymbol{\Pi}_{\mathbf{X}^{\top}}$ can be understood from chain rule.

Why is $\overline{\mathbf{H}}$ estimate rarely explicit?

Insert $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$in $\overline{\mathbf{K}}$:

$$
\begin{align*}
\overline{\mathbf{K}} & =\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}}_{x} \overline{\mathbf{H}}^{\top}+\mathbf{R}\right)^{-1} \tag{20}\\
& =\mathbf{X} \mathbf{Y}^{\top}\left(\mathbf{Y} \Pi_{\mathrm{X}^{\top}} \mathbf{Y}^{\top}+(N-1) \mathbf{R}\right)^{-1}, \tag{21}
\end{align*}
$$

where $\boldsymbol{\Pi}_{\mathbf{X}^{\top}}=\mathbf{X}^{+} \mathbf{X}$.
Note:

- Appearance of $\boldsymbol{\Pi}_{\mathbf{X}^{\top}}$ can be understood from chain rule.

■ Vanishing of $\Pi_{\mathbf{X}^{\top}}$ if \mathcal{H} is linear, or $(N-1) \leq M$.

Why is $\overline{\mathbf{H}}$ estimate rarely explicit?

Insert $\overline{\mathbf{H}}=\mathbf{Y X}^{+}$in $\overline{\mathbf{K}}$:

$$
\begin{align*}
\overline{\mathbf{K}} & =\overline{\mathbf{C}}_{x} \overline{\mathbf{H}}^{\top}\left(\overline{\mathbf{H}}_{x} \overline{\mathbf{H}}^{\top}+\mathbf{R}\right)^{-1} \tag{20}\\
& =\mathbf{X} \mathbf{Y}^{\top}\left(\mathbf{Y} \Pi_{\mathbf{X}^{\top}} \mathbf{Y}^{\top}+(N-1) \mathbf{R}\right)^{-1}, \tag{21}
\end{align*}
$$

where $\boldsymbol{\Pi}_{\mathbf{X}^{\top}}=\mathbf{X}^{+} \mathbf{X}$.
Note:

- Appearance of $\boldsymbol{\Pi}_{\mathbf{X}^{\top}}$ can be understood from chain rule.
- Vanishing of $\Pi_{\mathbf{X}^{\top}}$ if \mathcal{H} is linear, or $(N-1) \leq M$.
- Version without $\boldsymbol{\Pi}_{\mathbf{X}^{\top}}$ generally preferable.

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Theorem:

$$
\lim _{N \rightarrow \infty} \overline{\mathbf{H}}
$$

$=\quad \mathbb{E}\left[\mathcal{H}^{\prime}(\boldsymbol{x})\right]$

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Theorem:

$$
\lim _{N \rightarrow \infty} \overline{\mathbf{H}}
$$

$=$
$\mathbb{E}\left[\mathcal{H}^{\prime}(x)\right]$
I.e. $\overline{\mathbf{H}}$ is (indeed) the average derivative.

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Theorem:

$$
\lim _{N \rightarrow \infty} \overline{\mathbf{H}} \quad=\quad \mathbb{E}\left[\mathcal{H}^{\prime}(\boldsymbol{x})\right]
$$

I.e. $\overline{\mathbf{H}}$ is (indeed) the average derivative.

- $p(\boldsymbol{x})$ same as for ensemble (used for $\overline{\mathbf{H}}$).

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Theorem:

$$
\lim _{N \rightarrow \infty} \overline{\mathbf{H}} \quad=\quad \mathbb{E}\left[\mathcal{H}^{\prime}(\boldsymbol{x})\right]
$$

I.e. $\overline{\mathbf{H}}$ is (indeed) the average derivative.

- $p(\boldsymbol{x})$ same as for ensemble (used for $\overline{\mathbf{H}}$).
- $p(x)$ must be Gaussian!

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Theorem:

$$
\begin{array}{lll}
\lim _{N \rightarrow \infty} \overline{\mathbf{H}} & = & \mathbb{E}\left[\mathcal{H}^{\prime}(\boldsymbol{x})\right] \\
\lim _{N \rightarrow \infty}{ }^{\prime \prime} \mathbf{Y X}^{+} &
\end{array}
$$

I.e. $\overline{\mathbf{H}}$ is (indeed) the average derivative.

- $p(\boldsymbol{x})$ same as for ensemble (used for $\overline{\mathbf{H}}$).
- $p(x)$ must be Gaussian!

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Theorem:

```
\(\lim _{N \rightarrow \infty} \overline{\mathbf{H}}\)
    \(=\quad \mathbb{E}\left[\mathcal{H}^{\prime}(\boldsymbol{x})\right]\)
\(\lim _{N \rightarrow \infty} \mathbf{Y X}^{+}\)
\(\lim _{N \rightarrow \infty} \mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X X}^{\top}\right)^{-1}\)
```

I.e. $\overline{\mathbf{H}}$ is (indeed) the average derivative.

- $p(\boldsymbol{x})$ same as for ensemble (used for $\overline{\mathbf{H}}$).
- $p(x)$ must be Gaussian!

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Theorem:

```
\(\lim _{N \rightarrow \infty} \overline{\mathbf{H}}\)
    ||
    \(\lim _{N \rightarrow \infty} \mathbf{Y X}^{+}\)
    \(\lim _{N \rightarrow \infty} \mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X X}^{\top}\right)^{-1}\)
    \(\lim _{N \rightarrow \infty} \overline{\mathbf{C}}_{y x} \overline{\mathbf{C}}_{x}^{-1}\)
```

I.e. $\overline{\mathbf{H}}$ is (indeed) the average derivative.

- $p(\boldsymbol{x})$ same as for ensemble (used for $\overline{\mathbf{H}}$).
- $p(\boldsymbol{x})$ must be Gaussian!

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Theorem:

```
\(\lim _{N \rightarrow \infty} \overline{\mathbf{H}}\)
    ||
    \(\lim _{N \rightarrow \infty} \mathbf{Y X}^{+}\)
    \(\lim _{N \rightarrow \infty} \mathbf{Y X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}\)
        ||
    \(\lim _{N \rightarrow \infty} \overline{\mathrm{C}}_{y x} \overline{\mathrm{C}}_{x}^{-1}\)
    ||
    \(\mathrm{C}_{y x} \mathbf{C}_{x}^{-1} \quad\) (a.s., by Slutsky, sub. to reg.)
```

I.e. $\overline{\mathbf{H}}$ is (indeed) the average derivative.

- $p(\boldsymbol{x})$ same as for ensemble (used for $\overline{\mathbf{H}}$).
- $p(\boldsymbol{x})$ must be Gaussian!

Does $\overline{\mathbf{H}}$ relate to \mathcal{H}^{\prime} ?

Theorem:

```
\(\lim _{N \rightarrow \infty} \overline{\mathbf{H}}\)
\(\lim _{N \rightarrow \infty}{ }_{\|} \mathbf{Y X}^{+}\)
    \(=\quad \mathbb{E}\left[\mathcal{H}^{\prime}(\boldsymbol{x})\right]\)
    \(\|\)
\(\lim _{N \rightarrow \infty} \mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X X}^{\boldsymbol{\top}}\right)^{-1}\)
    "
\(\lim _{N \rightarrow \infty} \overline{\mathbf{C}}_{y x} \overline{\mathbf{C}}_{x}^{-1}\)
    ||
\(\mathrm{C}_{y x} \mathbf{C}_{x}^{-1} \quad\) (a.s., by Slutsky, sub. to reg.)
```

l.e. $\overline{\mathbf{H}}$ is (indeed) the average derivative.

- $p(\boldsymbol{x})$ same as for ensemble (used for $\overline{\mathbf{H}}$).
- $p(\boldsymbol{x})$ must be Gaussian!

