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Abstract

Ensemble randomized maximum likelihood (EnRML) is an iterative (stochastic) ensemble smoother, used for

large and nonlinear inverse problems, such as history matching and data assimilation.

Its current formulation

is overly complicated and has issues with computational costs, noise, and covariance localization, even causing

some practitioners to omit crucial prior information,

This paper resolves these difficulties and sireamlines the

algorithm, without changing its output. These simplifications are achieved through the careful treatment of the
linearizations and subspaces. For example, it is shown (a) how ensemble linearizations relate to average sensitivity,
and (b) that the ensemble does not loese rank during updates. The paper also draws significantly on the theory of
the (deterministie) iterative ensemble Kalman smoother (IEnKS). Comparative benchmarks are obtained with the
Lorene-96 model with these two smoothers and the ensemble smoother using multiple data assimilation (ES-MDA).

1 Introduction

Ensemble (Kalman) smoothers are approximate methods
used for data assimilation (state estimation in geoscience),
history matching (parameter estimation for reservoirs),
and other inverse problems constrained by partial
differential equations. Iterative versions of the ensemble
smoother, derived from optimization perspectives, have
proven useful in improving the estimation accuracy
when the forward operator is nonlinear. Ensemble
randomized maximum likelihood (EnRML), also known
as the iterative ensemble smoother (IES), is one such
method., This paper fixes several issues with EnRML,
described in the following. Readers unfomilior with
EnRML may jump to the beginning of the derivation:

linearization M only appears in the product M, C. MT
which does not require X7, For the prior increment,
on the other hand, the modification breaks its Kalman
gain form. Meanwhile, the precision matrix form, ie.
their equation 10, is already invalid because it requires
the inverse of Cz,. Still, in their equation 13, the prior
increment is formulated with an inversion in ensemble
space, and also unburdened of the explicit computation
of M;. Intermediate explanations are lacking, but could
be construed to involve approximate inversions. Another
issue is that the pseudo-inverse of €, is now required {via
X). and covariance localization is further complicated.
An approximate version was therefore also proposed,
where the prior mismatch term is omitted from the update
formula altogether. This is not principled, and severely
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1 | INTRODIICTION

| Marc Bocquet®

| Alberto Carrassi®

This paper studies multiplicative inflation: the complementary scaling of the state
covariance in the ensemble Kalman filter (EnKF). Firstly, error sources in the EnKF
are catalogued and discussed in relation to inflation; nonlinearity is given particu-
lar attention as a source of sampling error. In response, the “finite-size” refinement
known as the EnKF-N is re-derived via a Gaussian scale mixture, again demon-
strating how it yields adaptive inflation. Existing methods for adaptive inflation
estimation are reviewed, and several insights are gained from a comparative analy-
sis. One such adaptive inflation method is selected to complement the EnKF-N to
make a hybrid that is suitable for contexts where model error is present and imper-
fectly parametrized. Benchmarks are obtained from experiments with the two-scale
Lorenz model and its slow-scale truncation. The proposed hybrid EnKF-N method of
adaptive inflation is found to yield systematic accuracy improvements in comparison
with the existing methods, albeit to a moderate degree.

KEYWORDS

adaptive filtering, Bayesian inference, covariance inflation, data assimilation,
ensemble Kalman filter (EnKF), scale mixture
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m About nonlinearity:

m Why does it create sampling error?
m Why does it cause divergence?
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Two scalar filtering problems

prior = N (|0, 2 ),
Consider the likelihood = N(0|x, 2),
problem with: = posterior = N'(z| 0, 1).

dynamical model: MpyonLin(z) = ... .

Now apply a
(square-root)
EnKF to it.

DA cycle (i.e. time) index
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Riccati eqn.

Assume linear (M) dynamics, Q =0, H=1,

and a deterministic EnKF.

The ensemble covariance obeys:

m the forecast step: B, = M?Pj_; ;

m the analysis step: P, = (I-K;)B;

— the “Riccati recursion”:

P, =(M?P,_) "' + R
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Deductions from Riccati: Attenuation

Stationary solution:
P =(M%P.)' +R!

_ _ _ I-M? ifM>1,
— Po=K R, K =
0 otherwise.

Initial conditions (ICs) don't appear
= ICs are “forgotten”.
— Sampling error is attenuated.

(5)
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Deductions from Riccati: Filter divergence

Perturbation analysis:

Recall: Pk = (I—Kk) MQ].sk_l.
N————
— M2

k— o0
By contrast, 0P~ (I—K)* [M?+ MM"] iP)_1,
Yielding 6Py — 0 in the linear case (M" = 0),
k—o0

as we found previously.

By contrast, no such guarantee exists when M” # 0
= filter divergence.

Also, M" may grow worse with &

= vicious circle.



Deductions from Riccati: Why (N — 1) ?

Riccati invariant to change P = oP, hence:

1/Py =1/(M?P,) +1/R



Sampling error from nonlinearity — why?

m Due to coupling of moments,

m
Errorf | = Z Ch,iErrorf | (13)
i=1
which defeats moment-matching.



Sampling error from nonlinearity — why?

m Consider the m-th “true” and “sample” moments:
pim = E[z"™], (10)

N
fim = N""Y " ai. (11)
n=1

m Due to coupling of moments,

m
Errorf | = Z Ch,iErrorf (13)
i=1
which defeats moment-matching.



Sampling error from nonlinearity — why?

m Consider the m-th “true” and “sample” moments:
pim = E[z"™], (10)

N
fim = N""Y " ai. (11)
n=1

m Define: Error,, = [l — fhm -

m Due to coupling of moments,

m
Errorf, = Z Cyn,iError; , (13)
i=1
which defeats moment-matching.



Sampling error from nonlinearity — why?

m Consider the m-th “true” and “sample” moments:

pm = E[2"], (10)
N
fom = - Z x? (11)
n=1
m Define: Error,, = [l — fhm -
m Define: uf, = E[(M(z))™].
m Due to coupling of moments,
Errorf = Z CyniError; (13)
i=1

which defeats moment-matching.



Sampling error from nonlinearity — why?

m Consider the m-th “true” and “sample” moments:

pm = E[z"™],
N

,am =N"! Z x?
n=1

m Define: Error,, = [l — fhm -
m Define: uf, = E[(M(z))™].

m Assume degree-d Taylor exp. of M is accurate. Then

Z Cm il -

m Due to coupling of moments,

f
Error,,, = Z Cp,iError;
i=1
which defeats moment-matching.

(12)

(13)



Sampling error from nonlinearity — why?

m Consider the m-th “true” and “sample” moments:

pm = E[z"™],
N

,am =N"! Z x?
n=1

m Define: Error,, = [l — fhm -
m Define: uf, = E[(M(z))™].

m Assume degree-d Taylor exp. of M is accurate. Then

Z Cm il -

m Hence,
md

f
Error,,, = Z Cp,iError;
i=1
which defeats moment-matching.

(12)

(13)
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Why do we prefer the Kalman gain “form”?

Not equivalent when (N—1) < M:

P =[I-KH|B (14)
P-—B +H'R'H)' (15)
Which is better?

Note that eqn. (15) follows from

prior o< exp[—1(z — &) B (x — 7)], (16)

which is “flat” in the directions outside of col(B).

= eqn. (15) yields “opposite” of the correct update.

Note: further complications in case P not defined in eqn. (15).
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Ensemble linearizations

Recall the EnKF gain:

K = CA (ACH + R )' 7 (8
Answer: yes (mostly): H=YX". (19)
Follow up questions:
m Why YX* ? (what is it?)
m Why is this rarely discussed?

m Does it relate to the analytic derivative (H') ?
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Why H = YX* ? (what is it?)

His:
m Linear least-squares (LLS) estimate of H given Y and X.
m BLUE?
= MVUE ?

EnKF also doing LLS of « given (x/,y) and H.
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Why is H estimate rarely explicit?

Insert H=YX" in K:
K =C,H (HC,H +R)' (20)
= XY (YT YT + (N-1)R) ", (21)
where Tyt = X*X.
Note:
m Appearance of IIxt can be understood from chain rule.
m Vanishing of IIxr if #H is linear, or (N—1) < M.

m Version without IIxt generally preferable.
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Does H relate to H' ?

Theorem:

lim H = E[H ()]
N—oo
Il I
lim YX* Cy.C'
N—oo
Il
lim YXT(XXT)™! (by Stein/IBP)
N—o0
Il
o= AL
dim ConC
Il

Cya;C;l (a-s., by Slutsky, sub. to reg.)
l.e. H is (indeed) the average derivative.

m p(x) same as for ensemble (used for H).

m p(x) must be Gaussian!



