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Introduction
• Numerical	weather	prediction	(NWP)	models	are	moving	towards	

higher	resolutions	to	capture	the	rapid	development	of	
convective-scale	systems.	

• Need	high-resolution	observations	to	allow	for	frequent	update	of	
these	models	(via	data	assimilation)
– E.g.	the	next	generation	of	hyper-spectral	and	geostationary	satellites,	

developments	 in	ground-based	 remote	sensing	and	the	exploitation	of	existing	
sources	of	information	such	as	mobile	phone	data	

• The	unprecedented	volume	of	data	provided	by	these	new	
observing	systems	will	bring	huge	opportunities	for	convective-
scale	forecasting	but	also	many	challenges.	
– high	volume	of	data	makes	it	difficult	 to	transmit,	store	and	assimilate	the	

data	in	a	timely	manner.	
– data	may	have	complicated	error	characteristics,	such	as	non-negligible	 error	

correlations,	 that	need	to	be	represented.
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Observation	Error	Correlations	(OECs)

• Many	ob errors	have	significant	spatial	correlations,	e.g.	~200km	for	AMV,	
~20km	DRWs

• OECs	are	difficult	to	estimate	
– often	attributed	to	the	uncertainty	in	the	comparison	of	the	

observations	to	the	model	variables,	known	as	representation	error,	
rather	than	instrument	noise	(Janjicet	al.,	2017).	

– can	be	state	and	model	dependent	(Waller	et	al.,	2014).	
• Neglecting		OECs	means	the	observations	cannot	be	assimilated	optimally	

at	the	resolutions	needed,	this	can	have	a	particularly	detrimental	impact	
on	the	analysis	of	small-scale	structures	(Fowler	et	al.	2018).	

• However,	progress	is	being	made,	with	centres around	the	world	now	
explicitly	accounting	for	OECs	in	a	variety	of	observation	types	allowing	for	
the	optimal	use	of	denser	observations	(e.g.	Simonin et	al.	2019.	

• This	work	explores	how	to	make	efficient	use	of	this	potentially	dramatic	
increase	in	the	amount	of	data	available	for	assimilation.



Data	compression	(DC)
• Instead	of	regular	thinning,	the	compression	of	the	data	provides	an	

objective	way	for	identifying	data	redundancy	within	the	observations.	DC,	
therefore,	allows	for	a	reduction	in	the	volume	of	the	data	while	retaining	
much	of	the	information	within	the	observations.

• Can	define	information	content	of	the	observations,	y,	in	terms	of	the	
sensitivity	of	the	analysis,	xa,	to	the	observations

• This	can	be	summarised	in	terms	of	the	degrees	of	freedom	for	signal,	or	
mutual	information.
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K =	Kalmangain	matrix	(weighting	given	to	
the	observations)
h (H) =	(linearised)	observation	operator	
(mapping	from	state	to	observed	variables)



Data	compression
• Could	compress	the	observations	in	terms	of	the	eigenvectors	of	S,	

but	a	neater	way	is	the	following:
• Let	M = R-1/2HB1/2 = UΛMVT

• Then	

• Can	compress	the	observations	using																													where	
,								and	pc is	the	number	of	compressed	observations	

retained	for	assimilation.

• The	compressed	observations	are	given	by	
• The	error	covariance	matrix	is	given	by	 .	Can	see	that	Rc

reduces	to	
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R and B are	the	observation	and	prior	error	
covariances respectively



Data	compression
• Ordering	the	transformed	observations	w.r.t the	singular	values	of	

M allows	for	the	first	pc observations	with	the	maximum	
information	to	be	selected	for	assimilation.

• The	information	content	of	the	remaining	compressed	observations	
becomes:
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Isotropic,	homogenous	example
• Circulantmatrices	have	the	property	that	eigenvectors	are	given	by	

the	Fourier	basis,	F.
• Let	B = FΓFT, R = FΨFT and H = I (direct	observations	of	the	

state)
• Then	M = FΨ-1/2Γ1/2FT, C = IcΨ-1/2FT

and 

• The	most	informative	compressed	observations	are	those	
associated	with	the	scales	at	which	the	prior	uncertainty	is	
relatively	large	compared	to	the	observation	uncertainty.

• The	reduction	in	the	analysis	error	variance	compared	to	the	prior	is	
given	by



Isotropic,	homogenous	example…
circular	grid	discretised	into	32	grid	points.	SOAR	correlation	structure.
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Observation	network	design	
Conclusions

• As	the	length-scales	in	the	observation	errors,	Lr,	increase	the	
observations	become	more	informative	about	the	small	scales.

• When	Lr > Lb,	the	observations	are	more	certain	at	small	scale	than	the	
prior	and	so	the	benefit	of	denser	observations	increases.
– Data	compression	can	be	used	to	help	reduce	the	amount	of	data	

while	retaining	the	small	scale	information	
– Assimilating	just	the	small-scale	information	may	not	result	in	the	

greatest	reduction	in	analysis	error	variance
• is	this	an	issue	for	nested	models?	
• use	a	metric	which	focuses	on	accuracy	of	small	scales?
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Lorenz	96	example:
Comparison	of	data	thinning	strategies

– Circular	domain	with	40	grid	points

– F=8.
– 80	direct,	regularly	distributed	observations	of	the	state	are	simulated
– Assimilation	using	EnSRF (Hunt	et	al.	2007).
– 100	ensemble	members
– Pf is	no	 longer	circulant
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Data	Reduction	methods
1.	Regular	thinning: to	every	16th	observation	(giving	5	in	total	at	each	
assimilation	time).

2.	Optimal	thinning:	obs corresponding	to	the	5	largest	diagonal	values	of	S = 
dxa/dy

3.	Spatial	averaging:	Observations	are	averaged	over	8	grid-points

4.	Optimal	Fourier	Data	Compression	(DC):	Observations	are	compressed	
using	a	Fourier	transform	with	wavelengths	chosen	corresponding	to	the	5	
largest	diagonal	values	of	FSFT.

5.	Optimal	DC:	Observations	are	compressed	using	the	method	described	
earlier,	again	assimilating	just	the	5	most	informative	observations.
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Observations	are	simulated	from	
a	truth	run:
1:	R	is	diag (left)
2:	R	is	spatially	correlated	(SOAR	
function),	 significant	 to	7	grid	
points	 (right).

Fig:	Rows	of	the	observation	
operator	matrix	for	the	five	
strategies	for
reducing	 the	observation	data.	
The	optimal	 strategies	are
illustrated	for	the	first	
observation	time.



Fig:	Results	are	averaged	over
200	experiments	with	different	
realisations of	the	observation	
and	model	error.
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When	observations	have	correlated	
error	they	are	more	sensitive	to	the	
form	of	data	reduction.

Selecting	the	observations	with	the	
greatest	information	 increases	the	
condition	number	 of	the	Hessian.	

Can	see	that	largest	MI	does	not	
necessarily	correspond	 to	smallest	
ens spread
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Conclusions

• Recent	advances	in	the	estimation	and	inclusion	of	OECs	in	
data	assimilation	means	that	we	are	getting	closer	to	
assimilating	observations	optimally	at	their	full	resolution.

• The	potential	large	increase	in	the	number	of	observations	
available	for	assimilation	carries	a	large	computational	and	
storage	burden	with	it.	

• Important	to	justify	any	increase	in	the	amount	of	data	
assimilated	and	give	careful	thought	to	data	reduction	
strategies.

• Submitted	to	Tellus A.
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Future	Work
Outstanding	questions:

– How	does	the	 importance	of	the	observations	depend	on	the	 initialisation	and	evolution	
of	convection?	Is	this	correctly	quantified	using	traditional	metrics	of	information	
content	such	as	DFS	and	MI?

– How	can	the	optimum	DC	strategy	be	simplified	so	that	 it	is	practically	feasible	for	
convective-scale	rapid	update	forecasting?

– How	can	we	modify	the	DC	strategy	to	take	 into	account	that	the	error	covariances are	
only	known	 approximately?

• Plan	is	to	develop	technique	using	idealisedconvective	scale	models	like	
the	modSWmodel.

• Use	PAWR	data	assimilated	using	the	Rapid-update-forecasting	(RUF)	
system	at	RIKEN,	Japan	as	a	proof	of	concept.	The	RUF	system	exploits	the	
massive	power	of	the	K	computer	to	assimilate	data	every	30	seconds	into	
a	100-m	mesh	limited	area	model (Miyoshi	et	al.	2016).	
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Thank	you	for	listening


