
On the use of an idealised convective column
model for ensemble data assimilation

S. Vetra-Carvalho, S. Migliorini, N. K. Nichols, S. P. Ballard

DA Workshop 2019, Leeds

May 16, 2019

Funding: NERC & Met Office



On the use of an idealised convective column model for ensemble data assimilation

Motivation

Motivation
In my PhD I looked at convective scale data assimilation from two
angles:

I Hydrostatic balance properties in high resolution ensemble
forecast errors in the presence of convection;

I How well does EnSRF capture sudden model regime changes
(linear, non-linear, discontinuous) using an idealised column
model.
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On the use of an idealised convective column model for ensemble data assimilation

Description of the 1+1D column model

Model variables

Model variables

The 1+1D model in time and space is based on the 1D Unified
Model from Met Office and was first developed by A. Rudd [Rudd
et al., 2012]

Figure: Model variables

Prescribed model parameters:

I RHc : critical relative
humidity in %;

I w(z): vertical velocity in
m/s (varies in z but not in
time).
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Description of the 1+1D column model

Model variables

Model flow

Figure: Flow of the non-linear model with rain not permitted.
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Description of the 1+1D column model

Model profiles

Initial profiles

Vertical wind is a constant function in time, given by

wj = 0.1 sin

(
zj
zt
π

)
.

The temperature profile is given by

Tj = T1 − (j − 1)80.0/Z ,

where T1 = 300 K is ground temperature, and j = 1, ..., 51.

Total water is given by

qt = 0.01qsat .
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Description of the 1+1D column model

Model profiles

Model profiles

0 0.1 0.2 0.3 0.4 0.5
0
2
4
6
8

10
12

w, m s−1

z,
 k

m

200 250 300
0
2
4
6
8

10
12

T, K

z,
 k

m

0 1 2

x 10
−4

0
2
4
6
8

10
12

q
t
, kg kg−1

z,
 k

m

0 0.5 1
0
2
4
6
8

10
12

f, %

z,
 k

m
 

 

 

Initial profile, t=0h
Final profile, t=12h

Figure: Model t = 0 and t = 12h profiles for wind, temperature, total
water, cloud fraction
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Description of the 1+1D column model

Semi-Lagrangian advection

We use 1st order SL advection scheme to advect qt , T , and Φ.
Their discretised advection equations are as follows:

qj(t) =

(
1−

wj∆t

∆z

)
qj(t − 1) +

wj∆t

∆z
qj−1(t − 1)

T a
j (t) =

(
1−

wj∆t

∆z

)
Tj(t − 1) +

wj∆t

∆z
Tj−1(t − 1)

Ψj(t) =

(
1−

wj∆t

∆z

)
Ψj(t − 1) +

wj∆t

∆z
Ψj−1(t − 1)

where T a
j (t) is the advected temperature quantity and forms part

of temperature profile at time t:

Tj(t) = T a
j (t) + ∆Tj(t)

Tj(t) = T a
j (t)−Ψj(t)w∆t.
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Description of the 1+1D column model

Diagnostic variable calculation

We use hydrostatic balance to calculate the pressure variable p at
each gridpoint.

Cloud fraction is calculated using a simplified version of the
Sharpe cloud scheme [Rudd 2012, Sharepe 2004]:

f (T , qt) = 0.5

(
1 + tanh

(
2(RHt − 1)

1− RHc

))
(1)

Using the new cloud fraction values, the change of temperature
is then calculated:

Ψ(f ,T , qt) = (1− f (T , qt)) Γd + f (T , qt)Γs , (2)

where Γd is the dry adiabatic lapse rate (a constant) and Γs is the
saturated adiabatic lapse rate (nonlinear function).
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Description of the 1+1D column model

Rain scheme

Using the definition on total relative humidity, RHt = qt/qsat , we
can rewrite cloud scheme as follows,

fj = 0.5

(
1 + tanh

(
2qcl ,j

qsat,j(1− RHc)

))
,

I RHc is the critical relative humidity for cloud formation

I qsat is saturation specific humidity

I qcl = qt − qsat represents cloud liquid water.

When fj > 0.2, cloud fraction is reduced (rain) by fraction a

fj := afj

qcl ,j := 0.5qsat,j (1− RHc) arctanh (2fj − 1)

qt := qcl + qsat .
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Description of the 1+1D column model

Model regimes

We choose initial profiles and parameters (w and RHc = 85%)
such that the model exhibits a clear linear period with no cloud
followed by a sudden cloud growth.
Model also retains part of the lower domain in a linear regime for
the entire 12h run, i.e. this setup cloud never forms below
z = 6.5km.
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Figure: Left: Linear and non-linear regimes seen at t = 0, 12h cloud fraction profiles with rain scheme. Right:
Change in cloud growth speed with varying RHc.
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Ensemble data assimilation

Data assimilation setup

I State variable: x = (T(z),qt(z)) ∈ R102×1.

I z = 1, ..., 51 vertical levels

I 12h assimilation window

I Parametrized cloud and rain

I R diagonal with σo ∈ [5%, 25%]

I Observing both T and qt

The ensemble is defined as X = (x1 x2 ... xN) ∈ R102×Ne

and perturbations are given by X′i = Xi − x for i = 1, ...,Ne .
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Ensemble

EnSRF

EnSRF
Ensemble forecast error covariance matrix is given by

Pf
e =

X′X′T

N − 1

The ensemble analysis error covariance can be written as

(Pa ≈) X′
a
X′

aT
= (I−KH) Pe

f .

Decompositing KH we can express ensemble analysis perturbations
explicitly

X′
a

= X′
f
V2

√
I−ΣT

2 Σ2VT
2 .

The analysis error covariance matrix is given by

Pa
e =

X′aX′aT

N − 1
.

Geir Evensen at http://enkf.nersc.no/
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Ensemble

Initial ensemble

Initial ensemble
The initial true error covariance matrix is

B = ΣCΣ,

where

I Σ2 is a diagonal matrix with initial σe ∈ [10%, 15%] of ref.
values;

I C is a correlation matrix given by SOAR function

Ci ,j =

(
1 +
|i − j |dz

L

)
e−|i−j |dz/L.

I Initially there are no cross-correlations between T and qt .

The initial ensemble perturbations are randomly sampled from this
B matrix with Gaussian distribution.
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Results

Results - no rain

I Initial profiles have important effect on cloud top and base
heights, as well as time and speed of cloud growth;

I Observing the entire state vector produces an ensemble that is
too confident unable to increase its spread in the cloud growth
regime sufficiently even with Ne = 100;

I Reducing number of spatial observations allows the ensemble
spread to respond to regime change and capture the cloud
growth;

I Correlation between T and qt is one-sided, with T affected by
qt through cloud fraction.
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Results

RMSE vs. Ens. Std., Ne = 30, observing entire state
vector
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Results

RMSE vs. Ens. Std., Ne = 30, observing every 5th
element in state vector
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Results

RMSE varying ensemble size when observing entire state space
every 30min

0 4 8 12
10

−3

10
−2

10
−1

10
0

10
1

10
2

Time, h

R
M

S
E

Temperature, K

 

 

N=6

N=12

N=24

N=51

N=102

0 4 8 12
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

Time, h

Total water, kg/kg

 

 

0 4 8 12
10

−15

10
−10

10
−5

10
0

Time, h

Cloud fraction, %

 

 

17 / 25



On the use of an idealised convective column model for ensemble data assimilation

Results

RMSE varying observation frequency in time for N = 51 when
observing entire state space
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Results

RMSE varying observation frequency in space for N = 51 when
observing every 30min
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Results

Results - rain

I Initial profiles have important effect on cloud top and base
heights, as well as time and speed of cloud growth;

I Observing the entire state vector produces an ensemble that is
too confident unable to increase its spread in the cloud growth
regime sufficiently even with Ne = 100;

I Reducing number of spatial observations allows the ensemble
spread to respond to regime change and capture the cloud
growth and discontinuous rain regime;

I Correlation between T and qt is two-sided now.
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On the use of an idealised convective column model for ensemble data assimilation

Results

Presence of rain in the ensemble
Here, Ne = 30, observing every 5th vertical level of T and qt .
Ensemble results average of 20 runs.
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Figure: In ensemble solutions colours represent a fraction of ensemble members that are raining at a point in
space and time: with dark blue meaning none of the ensemble members are raining and dark red all of the
ensemble members are raining.
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Conclusions

Conclusions

I Small ensemble can capture no cloud solution however, if
many good observations given at each assimilation time,
ensemble spread does not increase sufficiently to capture the
solution in the regime switch. Ensemble too confident.

I Increasing ensemble size has an important impact on the
ensemble performance, however benefit from running
ensemble larger than the size of the state space is small.

I Given some observations ensemble can capture the ’no cloud’
case.

I Given frequent in time (not fully observed state) set of
observations it is possible to reasonably capture the
discontinuous rain regime.

I Ensemble in most of cases over-predicts cloud growth.
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Other research using the model

Other research using the model
Alison Rudd developed the model in Fortran for use with variational
data assimilation for satellite observations [Rudd 2009, 2012].

The aim of her work was to investigate if it is possible to recover a
simple profile of vertical motion from observations of cloud-affected
brightness temperatures, via a standard VAR scheme.

Showed that:

I Cost function sensitivity to prognostic variables depended on
the wetness of the initial profile;

I Vertical wind profile could not be recovered by the variational
scheme through observing only TB where RHt > 60%;

I In more moist and non-linear conditions the accuracy of TLM
became questionable as more higher order terms were being
neglected.
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Other research using the model

What could we do more?

I Investigate inflation and localisation methods to allow
ensemble to make use of more observations with small
ensemble size.

I Compare various DA methods, e.g. variational and ensemble
methods with this model.

I Augment the state with cloud top and bottom height
observations.

I Further, the model can be made more complex by making the
vertical velocity time-dependent and including it in the sate
vector.
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