

Representing unresolved processes in the
modRSW model with a

neural network

Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, George Craig
Meteorological Institute Munich

Content

● Introduction / Problem / Thesis Objective
● Neural Network Basics
● Method
● Preliminary Results
● Long Term Model Behaviour

The Problem

● Current Model Resolution limited by
computational resources -> important
processes not resolved

● Typical approaches: physical parametrizations,
superparametrization, ... -> weaknesses

● Thesis Objective: Use neural network as
subgrid scale model

Masters Thesis Objective

● Can Artificial Neural Networks (ANN) be
employed as a subgrid-scale (SGS) model ?

● Case study using the modRSW model:
idealized but physically relevant dynamics

● Desired Result: ANN, trained on high resolution
data, improves accuracy of low resolution
forecasts

What is an Artificial Neural Network?

What is an Artificial Neural Network?

Inputs Outputs

What is an Artificial Neural Network?

What is an Artificial Neural Network?

Convolutional Networks

● Localisation
● Translational invariance
● ... cheaper than fully connected networks

Convolutional Networks

x1 x2 x3 x4 x5 ...

w1 w2 w3

Gridpoints

Kernel

Input Layer

Convolutional Networks

w1 w2 w3

Gridpoints

y1

x1

y1 = x1*w1 + x1*w2 + x2*w3 + bias

x1 x2 x3 x4 x5 ... Input Layer

Hidden Layer

Convolutional Networks

w1 w2 w3

Gridpoints

y1 y2

y2 = x1*w1 + x2*w2 + x3*w3 + bias

x1 x2 x3 x4 x5 ... Input Layer

Hidden Layer

Convolutional Networks

w1 w2 w3

Gridpoints

y1

y3 = x2*w1 + x3*w2 + x4*w3 + bias

y2 y3

x1 x2 x3 x4 x5 ... Input Layer

Hidden Layer

Convolutional Networks

w1 w2 w3

Gridpoints

y1

y4 = x3*w1 + x4*w2 + x5*w3 + bias

y2 y3 y4

x1 x2 x3 x4 x5 ... Input Layer

Hidden Layer

Convolutional Networks

w1 w2 w3

Gridpoints

y1 y2 y3 y4

x1 x2 x3 x4 x5 ...

y5 ...

End of layer, repeat.

Input Layer

Hidden Layer

Convolutional Networks

w1 w2 w3

Gridpoints

y1 y2 y3 y4

x1 x2 x3 x4 x5 ...

y5 ...

new
Kernel

Input Layer

Hidden Layer

Convolutional Networks

w1 w2 w3

Gridpoints

y1 y2 y3 y4

x1 x2 x3 x4 x5 ...

y5 ...

z1

z1 = y1*w1 + y1*w2 + y2*w3 + bias

Input Layer

Hidden Layer

Hidden Layer

Convolutional Networks

w1 w2 w3

Gridpoints

y1 y2 y3 y4

x1 x2 x3 x4 x5 ...

y5 ...

z1

z1 = y1*w1 + y1*w2 + y2*w3 + bias

...

Input Layer

Hidden Layer

Hidden Layer

Concept

Model State
t = t_1 LR-Model

Model State
t = t_2

Neural Network Correction

+

=

Corrected
Model State

t = t_2

t_2 t_3t_1

HR-
Model

HR-
Model

HR-
Model

Time

...HR

“Nature Run”

t_2 t_3t_1

C
oarse

graining

C
oarse

graining

C
oarse

graining

C
oarse

graining

HR-
Model

HR-
Model

HR-
Model

Time

...HR

t_2 t_3t_1

C
oarse

graining

C
oarse

graining

C
oarse

graining

C
oarse

graining

t_1 t_3t_2

HR-
Model

HR-
Model

HR-
Model

Time

...

...HR

LR1

“Model Truth”

t_2 t_3t_1

C
oarse

graining

C
oarse

graining

C
oarse

graining

C
oarse

graining

t_1 t_3t_2

HR-
Model

HR-
Model

HR-
Model

LR-

M
odel

LR-

M
odel

LR-

M
odel

Time

...

...HR

LR1LR1

t_2 t_3t_1

C
oarse

graining

C
oarse

graining

C
oarse

graining

C
oarse

graining

t_1 t_3t_2

HR-
Model

HR-
Model

HR-
Model

t_2 t_3

LR-

M
odel

LR-

M
odel

LR-

M
odel

...

Time

...

...

...HR

LR1

LR2

LR1

“Forecast”

t_2 t_3t_1

C
oarse

graining

C
oarse

graining

C
oarse

graining

C
oarse

graining

t_1 t_3t_2

HR-
Model

HR-
Model

HR-
Model

t_2 t_3

LR-

M
odel

LR-

M
odel

LR-

M
odel

...

Time

...

...

...HR

LR1

LR2

LR1

Concept

Model State
t = t_1 LR-Model

Model State
t = t_2

Neural Network Correction

+

=

Corrected
Model State

t = t_2

t_2 t_3t_1

C
oarse

graining

C
oarse

graining

C
oarse

graining

C
oarse

graining

t_1 t_3t_2

HR-
Model

HR-
Model

HR-
Model

t_2 t_3

LR-Model

LR-Model

LR-Model

...

Time

...

...

...HR

LR1

LR2

LR1

Network Input Network Output

Training Data Set

Training Data Set

● Ensemble:
● 20 Members (training/validation split: 15/5)
● Perturbation: random Orography

● HR: 800 gridpoints, LR: 200 gridpoints
● t_measure = 0.001, Nmeas = 5000
● Only chaotic dynamics (see last part)
● Computational variables, orography added as

4th channel

Network Architecture

● 1-D Convolutional Network
● 5 hidden layers
● Activation: "relu"
● Kernel size: 10 gridpoints
● 40 Filters

Results

Results

● Single step prediction
● RMSE(truth – forecast)
● RMSE(truth – corrected forecast)

Single Step Prediction

Single Step Prediction

Forecast

Corrected
Forecast

Increasing number of filters reduces “error noise“

10

20

30

40

50

Results

● Single step prediction
● RMSE(truth – forecast)
● RMSE(truth – corrected forecast)

● Online version
● Different lead times

10 time steps

50 time steps

200 time steps

500 time steps

4000 time steps,
Start at t = 0

4000 time steps,
Start at t = 100

Preliminary Results

● Forecast improvement seems possible over
extended lead times

● No feedback "disaster"
● Longer lead times -> greater improvement

variability
● Dependence on specific situation?
● ...

ModRSW Model Behaviour:
Long Term Simulations

Time Series of Domain Mean (Nk = 100)

Always perfectly conserved

Systematic increase

Two Regimes: chaotic / periodic

Nk = 100

Nk = 200

Nk = 500

Nk = 800

Thank you!

Turning off convection and/or rain

Time series of domain mean
Resolutions Nk = 200/500

dtmeasure = 0.01
ic = init_cond_topog_cos
H_c and/or H_r = 1000

All other parameters unchanged
Note: height is excluded in the plots, since it

behaves as expected, i.e. is perfectly conserved

Nk = 200
No Conv

No RainNo Conv/Rain

Nk = 500 No Conv

No RainNo Conv/Rain

Model dynamics

Model dynamics

●No meridional velocity
●Prescribed topography
●Periodic boundary conditions
●Dynamic timestep
●Initial conditions:

● h+b constant
● hu = 1
● hr = 0

(0, 0, .4, .4, 0, 0, 0, .6, .2, ...)

0.2

0.5

0.7

0.8

0.3

. . .

0.0

0.0

0.0

0.0

1.0

compare

0.2

0.5

0.7

0.8

0.3

0.0

0.0

0.0

0.0

1.0

Error (e.g. RMSE)

● Let network process a
number of different cases
● Define cost function that will
depend on all weights and
biases
● Compute its gradient
● Adjust weights and biases
● Repeat until minimum is
reached

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

