Representing unresolved processes in the modRSW model with a neural network

Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, George Craig Meteorological Institute Munich

Content

- Introduction / Problem / Thesis Objective
- Neural Network Basics
- Method
- Preliminary Results
- Long Term Model Behaviour

The Problem

- Current Model Resolution limited by computational resources -> important processes not resolved
- Typical approaches: physical parametrizations, superparametrization, ... -> weaknesses
- Thesis Objective: Use neural network as subgrid scale model

Masters Thesis Objective

- Can Artificial Neural Networks (ANN) be employed as a subgrid-scale (SGS) model ?
- Case study using the modRSW model: idealized but physically relevant dynamics
- Desired Result: ANN, trained on high resolution data, improves accuracy of low resolution forecasts

- Localisation
- Translational invariance
- ... cheaper than fully connected networks

Gridpoints

Kernel

Gridpoints

y1 = x1*w1 + x1*w2 + x2*w3 + bias

Gridpoints

$y^2 = x^1 + x^2 + x^3 + bias$

Gridpoints

$y3 = x2^*w1 + x3^*w2 + x4^*w3 + bias$

Gridpoints

 $y4 = x3^{*}w1 + x4^{*}w2 + x5^{*}w3 + bias$

Gridpoints

End of layer, repeat.

Gridpoints

new Kernel

Gridpoints

Hidden Layer

z1 = y1*w1 + y1*w2 + y2*w3 + bias

Gridpoints

Hidden Layer

z1 = y1*w1 + y1*w2 + y2*w3 + bias

Concept

"Nature Run"

"Model Truth"

Concept

Training Data Set

Training Data Set

- Ensemble:
 - 20 Members (training/validation split: 15/5)
 - Perturbation: random Orography
- HR: 800 gridpoints, LR: 200 gridpoints
- t_measure = 0.001, Nmeas = 5000
- Only chaotic dynamics (see last part)
- Computational variables, orography added as 4th channel

Network Architecture

- 1-D Convolutional Network
- 5 hidden layers
- Activation: "relu"
- Kernel size: 10 gridpoints
- 40 Filters

Results

Results

- Single step prediction
 - RMSE(truth forecast)
 - RMSE(truth corrected forecast)

Single Step Prediction

Single Step Prediction

Increasing number of filters reduces "error noise"

Results

- Single step prediction
 - RMSE(truth forecast)
 - RMSE(truth corrected forecast)

Online version

• Different lead times

Preliminary Results

- Forecast improvement seems possible over extended lead times
- No feedback "disaster"
- Longer lead times -> greater improvement variability
 - Dependence on specific situation?

•

ModRSW Model Behaviour: Long Term Simulations

Time Series of Domain Mean (Nk = 100)

Thank you!

Turning off convection and/or rain

Time series of domain mean Resolutions Nk = 200/500 dtmeasure = 0.01 ic = init_cond_topog_cos H_c and/or H_r = 1000 All other parameters unchanged Note: height is excluded in the plots, since it behaves as expected, i.e. is perfectly conserved

Nk = 200

Model dynamics

$$\begin{aligned} \partial_t h + \partial_x (hu) &= 0, \qquad (2a) \\ \partial_t (hu) + \partial_x (hu^2 + P) + hc_0^2 \partial_x r - fhv &= -Q\partial_x b, \qquad (2b) \\ \partial_t (hv) + \partial_x (huv) + fhu &= 0, \qquad (2c) \\ \partial_t (hr) + \partial_x (hur) + h\widetilde{\beta}\partial_x u + \alpha hr &= 0, \qquad (2d) \\ P(h; b) &= \begin{cases} p(H_c - b), & \text{for } h + b > H_c, \\ p(h), & \text{otherwise,} \end{cases} \end{aligned}$$

 $p(h) = \frac{1}{2}gh^2$

Model dynamics

- •No meridional velocity
- Prescribed topography
- Periodic boundary conditions
- •Dynamic timestep
- Initial conditions:
 - h+b constant
 - hu = 1
 - hr = 0

Error (e.g. RMSE)

- Let network process a number of different cases
- Define cost function that will depend on all weights and biases
- Compute its gradient
- Adjust weights and biases
- Repeat until minimum is reached