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The Problem

● Current Model Resolution limited by 
computational resources -> important 
processes not resolved

● Typical approaches: physical parametrizations, 
superparametrization, ... -> weaknesses

● Thesis Objective: Use neural network as 
subgrid scale model



  

Masters Thesis Objective

● Can Artificial Neural Networks (ANN) be 
employed as a subgrid-scale (SGS) model ?

● Case study using the modRSW model: 
idealized but physically relevant dynamics

● Desired Result: ANN, trained on high resolution 
data, improves accuracy of low resolution 
forecasts 



  

What is an Artificial Neural Network?



  

What is an Artificial Neural Network?



  

Inputs Outputs

What is an Artificial Neural Network?



  

What is an Artificial Neural Network?



  



  



  

Convolutional Networks

● Localisation
● Translational invariance
● ... cheaper than fully connected networks
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Convolutional Networks
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Convolutional Networks
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Convolutional Networks
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Convolutional Networks
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Convolutional Networks
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Convolutional Networks
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Convolutional Networks
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Training Data Set



  



  

Training Data Set

● Ensemble: 
● 20 Members (training/validation split: 15/5)
● Perturbation: random Orography

● HR: 800 gridpoints, LR: 200 gridpoints
● t_measure = 0.001, Nmeas = 5000
● Only chaotic dynamics (see last part)
● Computational variables, orography added as 

4th channel



  

Network Architecture

● 1-D Convolutional Network
● 5 hidden layers
● Activation: "relu"
● Kernel size: 10 gridpoints
● 40 Filters



  

Results



  

Results

● Single step prediction
● RMSE( truth – forecast )
● RMSE( truth – corrected forecast )



  

Single Step Prediction
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Increasing number of filters reduces “error noise“
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Results

● Single step prediction
● RMSE( truth – forecast )
● RMSE( truth – corrected forecast )

● Online version
● Different lead times



  

10 time steps



  

50 time steps



  

200 time steps



  

500 time steps



  

4000 time steps,
Start at t = 0



  

4000 time steps,
Start at t = 100



  

Preliminary Results

● Forecast improvement seems possible over 
extended lead times

● No feedback "disaster"
● Longer lead times -> greater improvement 

variability 
● Dependence on specific situation?
● ...



  

ModRSW Model Behaviour: 
Long Term Simulations



  

Time Series of Domain Mean (Nk = 100)

Always perfectly conserved

Systematic increase

Two Regimes: chaotic / periodic



  

Nk = 100

Nk = 200



  

Nk = 500

Nk = 800



  

Thank you!



  

Turning off convection and/or rain

Time series of domain mean
Resolutions Nk = 200/500

dtmeasure = 0.01
ic = init_cond_topog_cos
H_c and/or H_r = 1000

All other parameters unchanged
Note: height is excluded in the plots, since it 

behaves as expected, i.e. is perfectly conserved



  

Nk = 200
No Conv

No RainNo Conv/Rain



  

Nk = 500 No Conv

No RainNo Conv/Rain



  

Model dynamics



  

Model dynamics

●No meridional velocity
●Prescribed topography
●Periodic boundary conditions
●Dynamic timestep
●Initial conditions:

● h+b constant
● hu = 1
● hr = 0



  

(0, 0, .4, .4, 0, 0, 0, .6, .2, ...)
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Error (e.g. RMSE)

● Let network process a 
number of different cases
● Define cost function that will 
depend on all weights and 
biases
● Compute its gradient
● Adjust weights and biases
● Repeat until minimum is 
reached
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