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The Numerical Weather Prediction Paradigm
Given an

1. estimate of the current atmospheric state (initial conditions)

2. appropriate description of the boundary conditions

predict future weather using physical laws in the form of PDEs governing the
atmospheres evolution.
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Data Assimilation

Figure: Data assimilation is about finding the right balance between your observations
and your previous forecast.
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Error due to Unresolved Scales

The error due to unresolved scales is the difference between a noise-free
observation and a model’s representation of that observation.

Figure: Janjić et al. (2017)
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Aims

1. Demonstrate the effect of the error due to
unresolved scales

2. Show how unresolved scales can lead to an
observation bias

3. Explain how the Schmidt-Kalman filter can
compensate for these errors
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The Kalman Filter
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The Kalman Filter

Predict: xfk = Mxak−1

Correct: xak = x
f
k +Kk

(
yk −Hkx

f
k

)
where K = P fHT

(
HP fHT +R

)−1
,

M is our model,
H is the (linearized) observation operator,

P f is the forecast error covariance
and R is the observation error covariance.
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Error due to Unresolved Scales - Model Structure

We partition our model into large-scale and small-scale
components (Janjić & Cohn 2006)

xtk =

(
xl,t

xs,t

)
k

=

(
Ml 0
Msl Ms

)(
xl,t

xs,t

)
k−1

+

(
ηl

ηs

)
k
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Error due to Unresolved Scales - Observations

We now consider observations to be a combination of large-scale
and small-scale components plus instrument error ε:

y = Hl,txl,t +Hs,txs,t + ε.

The representation error is then given by

ξ =
(
Hl,t −Hm Hs,t

)(xl,t
xs,t

)
,

where Hm is the (possibly incorrect) observation operator used
in our filter.
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Bias due to Unresolved Scales

Dropping the t superscripts and assuming Msl and Ms are
perfect the true small-scale state is given by

xsk = Mslxlk−1 +Msxsk−1.

Assuming no observation operator error we will have

〈ξk〉 = 〈Hs(xsk)〉
= 〈Hs(Mslxlk−1 +Msxsk−1)〉
= 〈Hs(Mslxlk−1 +Ms(. . . (Mslxl0 +Ms(xs0))))〉.

So potentially 〈ξk〉 6= 0.
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The Schmidt-Kalman Filter (Schmidt 1966)

Use the statistics of the large-scale and small-scale
processes:

P =

(
P ll P ls

P sl P ss

)
.

Analysis updates with modelled small-scale error covariance Cs

(Janjić & Cohn 2006):

xl,a = xl,f +K l(y −Hlxl,f ),

K l =

((
P ll,f P ls,f

)((Hl)T

(Hs)T

))
D−1

D = HlP ll,f (Hl)T +HlP ls,f (Hs)T

+HsP sl,f (Hl)T +HsCs(Hs)T +R.
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Evaluating the True Analysis Error of the
Schmidt-Kalman Filter

When deriving the true analysis error equation for the
Schmidt-Kalman filter we make the following assumptions.

1. All models and observation operators are linear.

2. We have exact knowledge of what the small-scales are.

3. We filter the large-scale state only.
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True Analysis Error Equation

(
el,ak
es,ak

)
=

[
I −

(
Kl

k

0

)(
Hl Hs

)](Ml 0
Msl Ms

)(
el,ak−1

es,ak−1

)
+

[
I −

(
Kl

k

0

)(
Hl Hs

)](ηl
k

ηs
k

)
+

(
Kl

k

0

)
(γk + εk +Hsxs,f

k )

* el,a, es,a → state errors

* ηl,ηs → model errors

* γ → observation operator error

* ε→ instrument error
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Numerical Experiments - Random Walk Model

(
xl

xs

)
k+1

=

(
1 0
α e−1/2

)(
xl

xs

)
k

+

(
ηl

ηs

)
k

,

yk =
(
1 1

)(xl
xs

)
k

+ εk

where ηlk ∼ N (0, 1), ηsk ∼ N (0, 0.3)
and εk ∼ N (0, 0.1).

For unbiased observations α = 0.
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Numerical Experiments - Large-scale Analysis Error
Variances
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The Reduced Kalman Filter
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The Schmidt-Kalman Filter
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Bias Correction
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Introducing an Observation Bias due to Unresolved
Scales

(
xl

xs

)
k+1

=

(
1 0
α e−1/2

)(
xl

xs

)
k

+

(
ηl

ηs

)
k

,

yk =
(
1 1

)(xl
xs

)
k

+ εk

where ηlk ∼ N (0, 1), ηsk ∼ N (0, 0.3)
and εk ∼ N (0, 0.1).

For biased observations α 6= 0.
(We take α = 0.05)
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Observation Bias Correction with State
Augmentation

Correct observation bias⇒ Augment the state (Friedland 1969,
Jazwinski 2007)

We assume we can express our model in the formxl,txβ,t

xδ,t


k

=

Ml 0 0
Msl Ms 0
0 0 Ms

xl,txβ,t

xδ,t


k−1

+

ηl0
ηs


k

,

where xβ is the bias state and xδ is the unbiased unresolved
state.
(xs = xβ + xδ)
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Numerical Experiments for Bias Correcting Filters -
Large-scale Analysis Error Variance
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Conclusion

1. The error due to unresolved scales is a consequence of not being able to
completely represent an observable process.

2. The Schmidt-Kalman filter can compensate for error due to unresolved
scales with our simple model.

3. We can use state augmentation to correct observation biases.

4. The Schmidt-Kalman filter is compatible with this method of bias
correction.
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Current and Future Work

Now starting to examine car temperature data by

1. examining the quality of the data

2. looking into the natural variability of the data

3. looking into representation errors in a real meteorological data set

Future work for the Schmidt-Kalman filter includes

1. adapting this filter to nonlinear models (i.e. ensemble SKF, variational or
ensemble-variational form)

2. determine a suitable way to model/approximate the small-scale error
covariance

3. mitigating the computational cost associated with this filter
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